首页> 外文期刊>Fire and materials >Examples of fire engineering design for steel members, using a standard curve versus a new parametric curve
【24h】

Examples of fire engineering design for steel members, using a standard curve versus a new parametric curve

机译:使用标准曲线与新参数曲线的钢构件消防工程设计示例

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents examples of the differences that can occur when a standard time-temperature curve and a parametric time-temperature curve are used to determine temperatures likely to be reached by uninsulated and insulated steel members during a fire. For low and moderate structural fire severity situations, determination of the adequacy of a steel member by comparing the temperature reached in a 'design fire' with the limiting temperature based on the member heat sink characteristics, extent of insulation and utilization factor is becoming increasingly common fire engineering design practice. For this it is important to have an accurate and widely applicable parametric fire model as is practicable. The standard time-temperature curve used in the examples is the ISO 834 curve. The two parametric time-temperature curves used in the paper are the Eurocode parametric curve and a recently developed one termed the 'BFD curve'. The latter has been found to fit the results of a wide range of actual fire tests more closely than do existing parametric curves and is mathematically simpler in form. The shape of the BFD curve and the parameters used to define it bear a strong relationship to both the pyrolysis coefficient (R/A_vh_v~(0.5)) and the opening factor, F_(02). The curve also models the development of fire without the need for time shifts. It uses a single and relatively simple equation to generate the temperature of both the growth and decay phases of a fire in a building and only three factors are required to derive the curve. These factors are (ⅰ) the maximum gas temperature, (ⅱ) the time at which this maximum temperature occurs, and (ⅲ) a shape constant for the curve. If desired, the shape constant can be different on the growth and the decay sides to model a very wide range of natural fire conditions and test results. This paper presents an overview of the background to the BFD curve. It then illustrates its use in a simple fire engineering design application, where the adequacy of a steel beam is checked using the Eurocode parametric curve and the BFD curve to represent the fire.
机译:本文介绍了使用标准时间-温度曲线和参数时间-温度曲线确定火灾中非绝缘和绝缘钢构件可能达到的温度时可能出现的差异的示例。对于低度和中度结构火灾严重性情况,通过比较“设计火灾”中达到的温度与基于构件散热器特性,绝缘程度和利用率的极限温度来确定钢构件的适当性变得越来越普遍。消防工程设计实践。为此,重要的是要有一个切实可行的准确而广泛适用的参数火灾模型。示例中使用的标准时间-温度曲线是ISO 834曲线。本文中使用的两条参数时间温度曲线是Eurocode参数曲线和最近开发的一条称为“ BFD曲线”的曲线。已发现后者比现有参数曲线更适合广泛的实际火灾测试结果,并且在数学上更简单。 BFD曲线的形状和用于定义它的参数与热解系数(R / A_vh_v〜(0.5))和开放系数F_(02)都有很强的关系。该曲线还可以模拟火灾的发生,而无需进行时间转换。它使用一个简单的相对简单的方程式来生成建筑物火灾的生长期和衰退期的温度,只需要三个因素即可得出曲线。这些因素是(ⅰ)最高气体温度,(ⅱ)达到最高温度的时间和(ⅲ)曲线的形状常数。如果需要,形状常数在生长和衰变侧可以不同,以模拟非常广泛的自然火灾条件和测试结果。本文概述了BFD曲线的背景。然后说明了它在简单的消防工程设计应用中的使用,在该应用中,使用Eurocode参数曲线和BFD曲线代表火灾来检查钢梁的适当性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号