...
首页> 外文期刊>Finite fields and their applications >Intersection distribution, non-hitting index and Kakeya sets in affine planes
【24h】

Intersection distribution, non-hitting index and Kakeya sets in affine planes

机译:交叉口分布,非击球指数和凯悦套在仿射飞机中

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we propose the concepts of intersection distribution and non-hitting index, which can be viewed from two related perspectives. The first one concerns a point set So f size q + 1 in the classical projective plane PG(2, q), where the intersection distribution of Sindicates the intersection pattern between Sand the lines in PG(2, q). The second one relates to a polynomial f over a finite field F-q, where the intersection distribution of f records an overall distribution property of a collection of polynomials {f(x) + cx vertical bar c is an element of F-q}. These two perspectives are closely related, in the sense that each polynomial produces a (q + 1)-set in a canonical way and conversely, each (q+ 1)-set with certain property has a polynomial representation. Indeed, the intersection distribution provides a new angle to distinguish polynomials over finite fields, based on the geometric property of the corresponding (q+ 1)-sets. Among the intersection distribution, we identify a particularly interesting quantity named non-hitting index. For a point set S, its non-hitting index counts the number of lines in PG(2, q) which do not hit S. For a polynomial fover a finite field F-q, its nonhitting index gives the summation of the sizes of qvalue sets {f(x) + cx vertical bar x is an element of F-q}, where c is an element of F-q. We derive lower and upper bounds on the non-hitting index and show that the non-hitting index contains much information about the corresponding set and the polynomial. More precisely, using a geometric approach, we show that the non-hitting index is sufficient to characterize the corresponding point set and the polynomial, when it is very close to the lower and upper bounds. Moreover, we employ an algebraic approach to derive the non-hitting index and the intersection distribution of several families of point sets and polynomials. As an application, we consider the determination of the sizes of Kakeya sets in affine planes. The polynomial viewpoint of intersection distributions enable us to compute the size of a few families of Kakeya sets with nice algebraic properties. Finally, we describe the connection between these new concepts and various known results developed in different contexts and propose some future research problems. (C) 2020 Elsevier Inc. All rights reserved.
机译:在本文中,我们提出了交叉路口分布和非击中指标的概念,可以从两个相关的角度看。第一个涉及在经典投影平面PG(2,Q)中的点设置SO F大小Q + 1,其中Sindicates在PG(2,Q)中的砂线之间的交叉点模式的交叉点分布。第二涉及在有限的场F-Q上的多项式F,其中F的交叉点分布记录多项式{F(x)+ cx垂直条C是F-Q}的元素的集合的总体分布特性。这两个观点在于每个多项式在规范方式中产生(Q + 1)-Set的意义上是密切相关的,并且相反地,具有某些性质的每个(Q + 1)-Set具有多项式表示。实际上,交叉分布提供了一种新的角度,以基于相应的(Q + 1)-SET的几何特性来区分多项式在有限区域上。在交叉口分布中,我们确定了一个特别有趣的数量,命名为非击中索引。对于点SET S,其非击中索引计数不在S.对于多项式FQ的PG(2,Q)中的线路数量,其非线性索引提供QValue集的尺寸的总和{F(x)+ cx垂直条x是fq}的元素,其中c是fq的元素。我们在非击中索引上获得较低和上限,并表明非击球索引包含有关相应集和多项式的许多信息。更精确地,使用几何方法,我们表明,当它非常接近下界和上限时,非击球索引足以表征相应的点组和多项式。此外,我们采用代数方法来得出非击中指数和几个点集条和多项式的交叉点分布。作为一个申请,我们考虑确定仿射飞机中的Kakeya套装的大小。交叉分布的多项式观点使我们能够计算kakeya套装的少数家庭的大小,具有良好的代数特性。最后,我们描述了这些新概念与各种已知结果之间的联系,在不同的背景下开发,并提出了一些未来的研究问题。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号