首页> 外文期刊>Fatigue & Fracture of Engineering Materials & Structures >Arbitrarily oriented microcracks near the tip of an interface macrocrack in bonded dissimilar anisotropic materials
【24h】

Arbitrarily oriented microcracks near the tip of an interface macrocrack in bonded dissimilar anisotropic materials

机译:粘结异种材料中界面大裂纹尖端附近的任意取向微裂纹

获取原文
获取原文并翻译 | 示例
           

摘要

It is well known that microcracking in brittle materials results in a reduction of the stress intensity factor (SIF) and energy release rate (ERR). The reduced SIF or ERR represents crack tip shielding which is of significant interest to micromechanics and material science researchers. However, the effect of microcracking on the SIF and ERR is a complicated subject even for isotropic homogeneous materials, and becomes much more formidable in case of interface cracks in bonded dissimilar solids. To unravel the micromechanics of interface crack tip shielding in bonded dissimilar anisotropic solids, an interface crack interacting with arbitrarily oriented subinterface microcracks in bonded dissimilar anisotropic materials is studied. After deducing the fundamental solutions for a subinterface crack under concentrated normal and tangential tractions, the present interaction problem is reduced to a system of integral equations which is then solved numerically. A J-integral analysis is then performed with special attention focused on the J_2-integral in a local coordinate system attached to the microcracks. Theoretical and numerical results reassert the conservation law of the J-integral derived for isotropic materials also to be valid for bonded dissimilar anisotropic materials. It is further concluded that there is a wastage when the remote J-integral transmits across the microcracking zone from infinity to the interface macrocrack tip. In order to highlight the influence of microstructure on the interfacial crack tip stress field, the crack tip SIF and ERR in several typical cases are presented. It is interesting to note that the Mode I SIF at the interface crack tip is quite different from the ERR in bonded dissimilar anisotropic materials.
机译:众所周知,脆性材料中的微裂纹会导致应力强度因子(SIF)和能量释放速率(ERR)降低。减小的SIF或ERR表示裂纹尖端屏蔽,这对于微机械和材料科学研究人员来说是非常重要的。但是,即使对于各向同性均质材料,微裂纹对SIF和ERR的影响也是一个复杂的问题,并且在结合的异种固体中出现界面裂纹时,其影响将更为严重。为了揭示键合各向异性固体中界面裂纹尖端屏蔽的微力学,研究了键合各向异性材料中界面裂纹与任意取向的子界面微裂纹的相互作用。在推导集中法向和切向牵引作用下子界面裂纹的基本解后,将当前的相互作用问题简化为一个积分方程组,然后对其进行数值求解。然后进行J积分分析,并特别关注连接到微裂纹的局部坐标系中的J_2积分。理论和数值结果重新证明了对于各向同性材料导出的J积分的守恒律,对于结合的异种各向异性材料也有效。进一步得出的结论是,当远程J积分从无穷大区域到微裂纹尖端到整个微裂纹区域传输时,就会产生浪费。为了突出微观结构对界面裂纹尖端应力场的影响,提出了几种典型情况下的裂纹尖端SIF和ERR。有趣的是,界面裂纹尖端处的模式I SIF与粘结异种各向异性材料中的ERR有很大不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号