首页> 外文期刊>Expert systems with applications >HIN_DRL: A random walk based dynamic network representation learning method for heterogeneous information networks
【24h】

HIN_DRL: A random walk based dynamic network representation learning method for heterogeneous information networks

机译:HIN_DRL:基于随机的非均匀信息网络动态网络表示学习方法

获取原文
获取原文并翻译 | 示例
       

摘要

Learning the low-dimensional vector representation of networks can effectively reduce the complexity of various network analysis tasks, such as link prediction, clustering and classification. However, most of the existing network representation learning (NRL) methods are aimed at homogeneous or static networks, while the real-world networks are usually heterogeneous and tend to change dynamically over time, therefore providing an intelligent insight into the evolution of heterogeneous networks is more practical and significant. Based on this consideration, we focus on the dynamic representation learning problem for heterogeneous information networks, and propose a random walk based Dynamic Representation Learning method for Heterogeneous Information Networks (HIN_DRL), which can learn the representation of network nodes at different timestamps. Specifically, we improve the first step of the existing random walk based NRL methods, which generally include two steps: constructing node sequences through random walk process, and then learning node representations by throwing the node sequences into a homogeneous or heterogeneous Skip-Gram model. In order to construct optimized node sequences for evolving heterogeneous networks, we propose a method for automatically extracting and extending meta-paths, and propose a new method for generating node sequences via dynamic random walk based on meta-path and timestamp information of networks. We also propose two strategies for adjusting the quantity and length of node sequences during each random walk process, which makes it more effective to construct the node sequences for heterogeneous information networks at a specific timestamp, thus improving the effect of dynamic representation learning. Extensive experimental results show that compared with the state-of-art algorithms, HIN_DRL achieves better results in Macro-F1, Micro-F1 and NMI for multi-label node classification, multi-class node classification and node clustering on several realworld network datasets. Furthermore, case studies of visualization and dynamic on Microsoft Academic dataset demonstrate that HIN_DRL can learn network representation dynamically and more effectively. (C) 2020 Elsevier Ltd. All rights reserved.
机译:学习网络的低维矢量表示可以有效地降低各种网络分析任务的复杂性,例如链路预测,聚类和分类。然而,大多数现有的网络表示学习(NRL)方法旨在实现同类或静态网络,而现实网络通常是异构的,并且往往会随着时间的推移动态变化,因此为异构网络的演变提供智能洞察力更实用和重要。基于这一考虑,我们专注于异构信息网络的动态表示问题,并提出了一种基于随机的动态表示用于异构信息网络(HIN_DRL)的动态表示学习方法,其可以学习不同时间戳的网络节点的表示。具体地,我们改进了基于随机步行的NRL方法的第一步,这通常包括两个步骤:通过随机步行过程构建节点序列,然后通过将节点序列投入均匀或异构的跳过克模型来构建节点序列。为了构建用于演化异构网络的优化节点序列,我们提出了一种用于自动提取和扩展元路径的方法,并提出了一种基于网络的元路径和时间戳信息通过动态随机步行产生节点序列的新方法。我们还提出了两个用于调整每个随机步道过程的节点序列数量和长度的策略,这使得在特定时间戳构建异构信息网络的节点序列更有效,从而提高动态表示学习的效果。广泛的实验结果表明,与最先进的算法相比,HIN_DRL在多个RealWorld网络数据集上实现了多级节点分类,多级节点分类和节点聚类的Macro-F1,Micro-F1和NMI的更好结果。此外,微软学术数据集的可视化和动态的案例研究表明,HIN_DRL可以动态更有效地学习网络表示。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号