...
首页> 外文期刊>Experimental Mechanics >High-performance simulation of fracture in idealized 'brick and mortar' composites using adaptive Monte Carlo minimization on the GPU
【24h】

High-performance simulation of fracture in idealized 'brick and mortar' composites using adaptive Monte Carlo minimization on the GPU

机译:在GPU上使用自适应蒙特卡罗最小化对理想的“砖和砂浆”复合材料的断裂进行高性能模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Simulation of the nonlinear mechanical response of materials with explicit representation of microstructural features is extremely challenging. These models typically involve a very large number of degrees of freedom, and are prone to convergence difficulties when searching for roots to nonlinear equilibrium equations. We focus on an idealized material model that is motivated by the microstructure of synthetic nacre: individual bricks' (representing ceramic platelets) interact through nonlinear cohesive springs (representing a small volume fraction of polymer that bonds the platelets). The model simulates composite fracture through rupture of the cohesive springs. The problem is cast in terms of energy minimization and is essentially described by nearest neighbor' interactions. The principal focus of this paper is to illustrate the computational gains achievable by the strategic marriage of robust, global Monte Carlo minimization algorithms to the graphics processing unit architecture, and to describe how they were realized on the Nvidia GPU. Results comparing the computation times for graphics processing unit and central processing unit implementations demonstrate that a new adaptive version of the simulated annealing algorithm yields a speedup of approximately 5 times, whereas the graphics processing unit implementation yields a speed-up of about 16 times over conventional four-core central processing unit implementations. The resulting speed enhancement for adaptive graphics processing unit minimization of a factor of 80 enables a far broader range of simulations than has previously been possible. Simulations involving as many as 300,000 bricks can be performed in hours, as compared to weeks required by central processing unit implementation. Many aspects of this approach are translatable to other physical problems involving energy minimization in systems with large numbers of degrees of freedom.
机译:具有微观结构特征的材料的非线性机械响应仿真非常具有挑战性。这些模型通常涉及大量自由度,并且在寻找非线性平衡方程的根时易于收敛。我们关注的是一种理想的材料模型,该模型是由人造珍珠质的微观结构所激发的:单个砖(代表陶瓷薄片)通过非线性内聚弹簧相互作用(代表与血小板结合的少量聚合物)。该模型通过内聚弹簧的破裂来模拟复合材料的破裂。这个问题是从能量最小化的角度出发的,并且基本上由最近邻的相互作用来描述。本文的主要重点是说明通过稳健的全局Monte Carlo最小化算法与图形处理单元体系结构的战略结合可获得的计算收益,并描述它们如何在Nvidia GPU上实现。比较图形处理单元和中央处理单元实现的计算时间的结果表明,新的自适应版本的模拟退火算法可产生约5倍的加速,而图形处理单元实现可比传统的加速约16倍。四核中央处理单元的实现。自适应图形处理单元最小化80倍所得到的速度增强,使得仿真范围比以前更广泛。与中央处理单元实施所需的几周相比,可以在几小时内完成涉及多达300,000块砖的模拟。这种方法的许多方面都可以转化为其他具有大量自由度的系统中涉及的能量最小化的物理问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号