...
首页> 外文期刊>Experimental Mechanics >Structural Analysis of a Dragonfly Wing
【24h】

Structural Analysis of a Dragonfly Wing

机译:蜻蜓翼的结构分析

获取原文
获取原文并翻译 | 示例
           

摘要

Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans contain the complete venation pattern including thickness variations throughout both wings. We subsequently approximated the forewing architecture with an efficient three-dimensional beam and shell model. We then determined the wing’s natural vibration modes and the wing deformation resulting from analytical estimates of 8 load cases containing aerodynamic and inertial loads (using the finite element solver Abaqus). Based on our computations we find that the inertial loads are 1.5 to 3 times higher than aerodynamic pressure loads. We further find that wing deformation is smaller during the downstroke than during the upstroke, due to structural asymmetry. The natural vibration mode analysis revealed that the structural natural frequency of a dragonfly wing in vacuum is 154 Hz, which is approximately 4.8 times higher than the natural flapping frequency of dragonflies in hovering flight (32.3 Hz). This insight in the structural properties of dragonfly wings could inspire the design of more effective wings for insect-sized flapping micro air vehicles: The passive shape of aeroelastically tailored wings inspired by dragonflies can in principle be designed more precisely compared to sail like wings —which can make the dragonfly-like wings more aerodynamically effective.
机译:蜻蜓的机翼是高度波纹状的,可显着提高机翼的刚度和强度,并导致具有良好空气动力学性能的轻型结构。但是,昆虫的翅膀如何承受空气动力和惯性载荷,以及如何调节襟翼的共振频率以承受这些载荷,这一点尚未得到充分了解。为了研究这一点,我们使用微型CT扫描仪对蜻蜓(Sympetrum vulgatum)的前和后进行了三维扫描。扫描包含完整的通气模式,包括整个两个翼的厚度变化。随后,我们使用有效的三维梁和壳模型近似了预架构。然后,我们通过对8个包含气动和惯性载荷的载荷工况(使用有限元求解器Abaqus)进行分析估算,确定了机翼的自然振动模式和机翼变形。根据我们的计算,我们发现惯性载荷是空气动力压力载荷的1.5至3倍。我们进一步发现,由于结构不对称,机翼在向下冲程期间的变形小于在向上冲程期间的变形。自然振动模式分析表明,蜻蜓在真空中的结构固有频率为154 Hz,比蜻蜓在悬停飞行中的自然拍动频率(32.3 Hz)高约4.8倍。对蜻蜓机翼结构特性的这种洞察力可能会激发出更有效的机翼设计,以用于昆虫大小的拍打式微型飞行器:与蜻蜓般的机翼相比,从原理上讲,蜻蜓启发的气动弹力机翼的被动形状可以设计得更加精确。可以使类似蜻蜓的机翼在空气动力学方面更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号