...
首页> 外文期刊>European Journal of Mathematics >On logarithmic integrals of the Riemann zeta-function and an approach to the Riemann Hypothesis by a geometric mean with respect to an ergodic transformation
【24h】

On logarithmic integrals of the Riemann zeta-function and an approach to the Riemann Hypothesis by a geometric mean with respect to an ergodic transformation

机译:关于黎曼zeta函数的对数积分以及关于遍历变换的几何平均值的黎曼假说方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We study the distribution of certain improper integrals associated with the Riemann zeta-function (zeta ), namely, where (a>0) is real. For instance, for (a=sigma in (0, 1]), we shall show that In particular, for (sigma = 1/2), we get a well-known result proved by Balazard, Saias and Yor: In the final section, we study Boole’s transformation, (T_a:x mapsto (x - a^2/x)/2) for (xne 0) and (T_a0=0), and show by its ergodicity that, for (sigma in mathbb {R}), the geometric mean-value of exists for almost all (xin mathbb {R}) as (n rightarrow + infty ), and is independent of x. In particular, for (sigma = 1/2), we obtain a criterion for the Riemann Hypothesis: let for fixed (n in mathbb {N}) and (mu in [0,pi ]), then a necessary condition for the truth of the Riemann Hypothesis is with arbitrary (alpha in mathbb {R}). Keywords Riemann zeta-function Riemann Hypothesis Ergodic theory Logarithmic integrals Cauchy distributed function Cauchy random walk Entire functions Mathematics Subject Classification 11M26 11K06 11K31 37A45 Page %P Close Plain text Look Inside Reference tools Export citation EndNote (.ENW) JabRef (.BIB) Mendeley (.BIB) Papers (.RIS) Zotero (.RIS) BibTeX (.BIB) Add to Papers Other actions Register for Journal Updates About This Journal Reprints and Permissions Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn Related Content Supplementary Material (0) References (22) References1.Adler, R.L., Weiss, B.: The ergodic infinite measure preserving transformation of Boole. Israel J. Math. 16(3), 263–278 (1973)MathSciNetCrossRef2.Aleman, A., Feldman, N.S., Ross, W.T.: The Hardy Space of a Slit Domain. Frontiers in Mathematics. Birkhäuser, Basel (2009)CrossRef3.Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, vol. 93. Cambridge University Press, Cambridge (2004)CrossRef4.Balazard, M., Saias, E., Yor, M.: Notes sur la fonction (zeta ) de Riemann, 2. Adv. Math. 143(2), 284–287 (1999)MATHMathSciNetCrossRef5.Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17(12), 656–660 (1931)CrossRef6.Boole, G.: On the comparison of transcendents, with certain applications to the theory of definite integrals. Philos. Trans. Roy. Soc. London 147, 745–803 (1857)CrossRef7.Choe, G.H.: Computational Ergodic Theory. Algorithms and Computation in Mathematics, vol. 13. Springer, Berlin (2005)8.Eroğlu, K.I., Ostrovskii, I.V.: On an application of the Hardy classes to the Riemann zeta-function. Turkish J. Math. 25(4), 545–551 (2001)MATHMathSciNet9.Gourdon, X.: The (10^{13}) first zeros of the Riemann Zeta function, and zeros computation at very large height (2004). http://​numbers.​computation.​free.​fr/​Constants/​Miscellaneous/​zetazeros1e13-1e24.​pdf 10.Ivić, A.: The Riemann Zeta-Function. John Wiley & Sons, New York (1985)MATH11.Kac, M.: On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc. 53(10), 1002–1010 (1947)MATHMathSciNetCrossRef12.Khintchine, A.Yu.: Zu Birkhoffs Lösung des Ergodenproblems. Math. Ann. 107(1), 485–488 (1933)13.Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. American Mathematical Society, Providence (1996)14.Levinson, N., Montgomery, H.L.: Zeros of the derivatives of the Riemann zeta-function. Acta Math. 133, 49–65 (1974)MATHMathSciNetCrossRef15.Lifshits, M., Weber, M.: Sampling the Lindelöf hypothesis with the Cauchy random walk. Proc. Lond. Math. Soc. 98(1), 241–270 (2009)MATHMathSciNetCrossRef16.Selberg, A.: On the zeros of Riemann’s zeta-function I. Skr. Norske Vid. Akad. Oslo I 10, 1–59 (1942)17.Shirai, T.: Variance of randomized values of Riemann’s zeta function in the critical line. RIMS Kôkyûroku 1590, 86–96 (2008). http://​repository.​kulib.​kyotou.​ac.​jp/​dspace/​bitstream/​2433/​81598/​1/​1590-06.​pdf 18.Srichan, T.: Discrete Moments of Zeta-Functions with Respect to Random and Ergodic Transformations. PhD thesis, Würzburg University (2015)19.Steuding, J.: Sampling the Lindelöf hypothesis with an Ergodic transformation. In: Functions in Number Theory and their Probabilistic Aspects. RIMS Kôkyûroku Bessatsu, vol. B34, pp. 361–381 (2012)20.Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, New York (1986)MATH21.Titshmarch, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1939)22.Tsang, K.M.: Some ({rmOmega })-theorems for the Riemann zeta-function. Acta Arith. 46(4), 369–395 (1986)MATHMathSciNet About this Article Title On logarithmic integrals of the Riemann zeta-function and an approach to the Riemann Hypothesis by a geometric mean with respect to an ergodic transformation Journal European Journal of Mathematics Volume 1, Issue 4 , pp 829-847 Cover Date2015-12 DOI 10.1007/s40879-015-0073-1 Print ISSN 2199-675X Online ISSN 2199-6768 Publisher Springer International Publishing Additional Links Register for Journal Updates Editorial Board About This Journal Manuscript Submission Topics Algebraic Geometry Keywords Riemann zeta-function Riemann Hypothesis Ergodic theory Logarithmic integrals Cauchy distributed function Cauchy random walk Entire functions 11M26 11K06 11K31 37A45 Authors Lahoucine Elaissaoui (1) Zine El-Abidine Guennoun (1) Author Affiliations 1. Department of Mathematics, Faculty of Sciences, Mohammed V University, 4 Street Ibn Battouta, B.P. 1014 RP, Rabat, Morocco Continue reading... To view the rest of this content please follow the download PDF link above.
机译:我们研究与黎曼Zeta函数(zeta)相关的某些不适当积分的分布,即(a> 0)是实数。例如,对于(a =(0,1]中的sigma),我们将证明,特别是对于(sigma = 1/2),我们得到了Balazard,Saias和Yor证明的众所周知的结果:部分,我们研究Boole变换(xne 0)和(T_a0 = 0)的(T_a:x mapsto(x-a ^ 2 / x)/ 2),并通过其遍历性表明,对于(mathbb {R }),几乎所有(xin mathbb {R})都存在(n rightarrow + infty)的几何平均值,并且与x无关。特别是对于(sigma = 1/2),我们获得一个准则对于黎曼假设,为固定(在mathbb {N}中为n)和(在[0,pi]中为mu),那么关于黎曼假设的真相的必要条件是任意值(在mathbb {R}中为alpha)。关键字黎曼zeta函数黎曼假设遍历理论对数积分柯西分布函数柯西随机游走整函数数学学科分类11M26 11K06 11K31 37A45页%P参考工具导出引证EndNote(.ENW)JabRef(.BIB)Mendeley(.BIB)论文(.RIS)Zotero(.RIS)BibTeX(.BIB)添加到论文其他操作注册期刊更新关于本期刊转载和许可分享在Facebook上分享此内容在Twitter上分享此内容在LinkedIn上分享此内容相关内容补充材料(0)参考文献(22)参考文献1.Adler,R.L.,Weiss,B .:遍历无限的测度,保留Boole的变换。以色列J.数学。 16(3),263-278(1973)MathSciNetCrossRef2.Aleman,A.,Feldman,N.S.,Ross,W.T .:狭缝域的Hardy空间。数学前沿。 Birkhäuser,巴塞尔(2009)CrossRef3.Applebaum,D .:《列维过程和随机演算》。剑桥高级数学研究,第一卷。 93.剑桥大学出版社,剑桥(2004年)CrossRef4.Balazard,M.,Saias,E.,Yor,M .: Notes sur la函子(zeta)de Riemann,2。数学。 143(2),284–287(1999)MATHMathSciNetCrossRef5.Birkhoff,G.D .:遍历定理的证明。程序Natl。学院科学USA 17(12),656-660(1931)CrossRef6.Boole,G .:关于先验者的比较,对定积分理论有一定的应用。菲洛斯反式罗伊Soc。伦敦147,745–803(1857)CrossRef7.Choe,G.H .:计算遍历理论。数学中的算法和计算,第一卷。 13.柏林,Springer(2005),8,Eroğlu,K.I.,Ostrovskii,I.V .:关于Hardy类在Riemann zeta函数上的应用。土耳其J. 25(4),545–551(2001)MATHMathSciNet9.Gourdon,X.:Riemann Zeta函数的(10 ^ {13})首零,以及在很大高度处的零计算(2004)。 http:/umbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf10.Ivić,A .:黎曼Zeta函数。 John Wiley&Sons,纽约(1985年),MATH11.Kac,M .:关于离散随机过程中的递归概念。公牛。阿米尔。数学。 Soc。 53(10),1002-1010(1947)MATHMathSciNetCrossRef12.Khintchine,A。Yu .: Zu BirkhoffsLösungdes Ergoden问题。数学。安107(1),485–488(1933)13.Levin,B.Ya .:关于整体功能的讲座。数学专着的翻译,第一卷。 150.美国数学协会,普罗维登斯(Providence)(1996)14。莱文森,N。,蒙哥马利,H.L .:黎曼zeta函数导数的零。数学学报。 133,49–65(1974)MATHMathSciNetCrossRef15.Lifshits,M.,Weber,M .:使用柯西随机游走对Lindelöf假设进行抽样。程序nd数学。 Soc。 98(1),241-270(2009)MATHMathSciNetCrossRef16.Selberg,A .:关于Riemann的zeta函数I.Skr的零点。 Norske Vid。阿卡德Oslo I 10,1–59(1942)17.Shirai,T .:临界线上的黎曼zeta函数随机值的方差。 RIMS科基鲁库1590,86-96(2008)。 http://repository.kulib.kyotou.ac.jp/dspace/bitstream/2433/81598/1/1590-06.pdf 18.Srichan,T .:离散时刻函数关于随机和遍历变换的图。维尔茨堡大学(WürzburgUniversity)博士论文(2015).19,Steuding,J .:使用遍历变换对Lindelöf假设进行抽样。于:数论中的功能及其概率方面。 RIMS极乐寺Bessatsu,第一卷B34,第361-381页(2012)。20。Titchmarsh,E.C .:《黎曼Zeta函数的理论》,第二版。牛津大学出版社,纽约(1986)MATH21.Titshmarch,E.C .: The Theory of Functions,2nd edn。牛津大学出版社,牛津(1939)22。曾荫权:关于黎曼zeta函数的一些({rmOmega})定理。 Acta Arith。 46(4),369-395(1986)MATHMathSciNet关于本文标题关于黎曼zeta函数的对数积分和关于遍历变换的几何平均值的黎曼假说方法,《欧洲数学杂志》第1卷,第4期,829-847页封面日期2015-12 DOI 10.1007 / s40879-015-0073-1打印ISSN 2199-675X在线ISSN 2199-6768出版商Springer International Publishing其他链接注册以获取期刊更新编辑委员会关于本期刊手稿投稿主题代数几何关键字Riemann zeta函数Riemann假设遍历论对数积分Cauchy分布函数Cauchy随机游动整个函数11M26 11K06 11K31 37A45作者Lahoucine Elaissaoui(1)Zine El-Abidine Guennoations(1)作者Aff穆罕默德五世大学理学院数学系,BP伊本·巴图塔4街1014 RP,摩洛哥拉巴特(Rabat),继续阅读...要查看本内容的其余部分,请点击上面的下载PDF链接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号