首页> 外文期刊>European Journal of Control >Satellite-to-satellite attitude control of a long-distance spacecraft formation for the Next Generation Gravity Mission
【24h】

Satellite-to-satellite attitude control of a long-distance spacecraft formation for the Next Generation Gravity Mission

机译:下一代重力飞行任务的长距离航天器编队的卫星到卫星姿态控制

获取原文
获取原文并翻译 | 示例
           

摘要

The paper presents the design and some simulated results of the attitude control of a satellite formation under study by the European Space Agency for the Next Generation Gravity Mission. The formation consists of two spacecrafts which fly more than 200 km apart at an altitude from the Earth's ground of between 300 and 400 km. The attitude control must keep the optical axes of the two spacecraft aligned with a microradian accuracy (pointing control). This is made possible by specific optical sensors accompanying the inter-satellite laser interferometer, which is the main payload of the mission. These sensors allow each spacecraft to actuate autonomous alignment after a suitable acquisition procedure. Pointing control is constrained by the angular drag-free control, which is imposed by mission science (Earth gravimetry at a low Earth orbit), and must zero the angular acceleration vector below 0.01 mu rad/s(2) in the science frequency band. This is made possible by ultrafine accelerometers from the GOCE-class, whose measurements must be coordinated with attitude sensors to achieve drag-free and pointing requirements. Embedded Model Control shows how coordination can be implemented around the embedded models of the spacecraft attitude and of the formation frame quaternion. Evidence and discussion about some critical requirements are also included together with extensive simulated results of two different formation types. (C) 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.
机译:本文介绍了由欧洲航天局进行的下一代重力飞行任务研究的卫星编队姿态控制的设计和一些模拟结果。该编队由两个航天器组成,它们在距地球地面300至400公里的高度上相距200多公里。姿态控制必须使两个航天器的光轴保持微弧度精度(指向控制)。这是通过卫星间激光干涉仪随附的特定光学传感器实现的,这是任务的主要有效载荷。这些传感器允许每个航天器在适当的采集程序后启动自主对准。指向控制受到任务科学(低地球轨道上的地球重力法)施加的无角度无阻力控制的约束,并且必须在科学频段内将角加速度矢量控制在0.01μrad / s(2)以下。这可以通过GOCE级的超精细加速度计来实现,该加速度计的测量必须与姿态传感器配合才能达到无阻力和指向性的要求。嵌入式模型控制显示了如何围绕航天器姿态和编队四元数的嵌入式模型实现协调。还包括一些关键要求的证据和讨论,以及两种不同地层类型的广泛模拟结果。 (C)2015欧洲控制协会。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号