首页> 外文期刊>Environmental Science & Technology >Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation
【24h】

Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation

机译:Fe(III)矿物在硝酸盐依赖性微生物U(IV)氧化中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

Microbiological reduction of soluble U(VI) to insoluble U(IV) is a means of preventing the migration of that element in groundwater, but the presence of nitrate in U(IV)containing sediments leads to U(IV) oxidation and remobilizaton. Nitrite or iron(III) oxyhydroxides may oxidize U(IV) under nitrate-reducing conditions, and we determined the rate and extent of U(IV) oxidation by these compounds. Fe(III) oxidized U(IV) at a greater rate than nitrite (130 and 10 mu M U(IV)/day, respectively). In aquifer sediments, Fe(III) may be produced during microbial nitrate reduction by oxidation of Fe(II) with nitrite, or by enzymatic Fe(II) oxidation coupled to nitrate reduction. To determine which of these mechanisms was dominant, we isolated a nitrate-dependent acetate- and Fe(II)-oxidizing bacterium from a U(VI)- and nitrate-contaminated aquifer. This organism oxidized U(IV) at a greater rate and to a greater extent under acetate-oxidizing (where nitrite accumulated to 50 mM) than under Fe(II)-oxidizing conditions. We show that the observed differences in rate and extent of U(IV) oxidation are due to mineralogical differences between Fe(III) produced by reaction of Fe(II) with nitrite (amorphous) and Fe(III) produced enzymatically (goethite or lepidocrocite). Our results suggest the mineralogy and surface area of Fe(III) minerals produced under nitrate-reducing conditions affect the rate and extent of U(IV) oxidation. These results may be useful for predicting the stability of U(IV) in aquifers.
机译:将可溶性U(VI)微生物还原为不溶性U(IV)是防止该元素在地下水中迁移的一种手段,但是,含U(IV)的沉积物中硝酸盐的存在会导致U(IV)氧化和迁移。亚硝酸盐或氢氧化铁(III)可以在还原硝酸盐的条件下氧化U(IV),我们测定了这些化合物氧化U(IV)的速率和程度。 Fe(III)氧化U(IV)的速率高于亚硝酸盐(分别为130和10μM U(IV)/天)。在含水层沉积物中,在微生物硝酸盐还原过程中,可能会通过亚硝酸盐氧化Fe(II)或通过酶促Fe(II)氧化与硝酸盐还原反应而生成Fe(III)。为了确定这些机制中的哪个占主导地位,我们从受U(VI)和硝酸盐污染的含水层中分离了硝酸盐依赖性乙酸盐和Fe(II)氧化细菌。与乙酸铁(II)氧化条件相比,该有机物在乙酸盐氧化(亚硝酸盐积累至50 mM)下以更高的速率和更大的程度氧化了铀(IV)。我们表明观察到的U(IV)氧化速率和程度的差异是由于Fe(II)与亚硝酸盐(无定形)反应生成的Fe(III)与酶促生成的Fe(III)(针铁矿或纤铁矿)之间的矿物学差异引起的)。我们的结果表明,在硝酸盐还原条件下产生的Fe(III)矿物的矿物学和表面积会影响U(IV)氧化的速率和程度。这些结果对于预测含水层中U(IV)的稳定性可能有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号