首页> 外文期刊>Environmental Science & Technology >CuO Nanostructures As Quartz Crystal Microbalance Sensing Layers for Detection of Trace Hydrogen Cyanide Gas
【24h】

CuO Nanostructures As Quartz Crystal Microbalance Sensing Layers for Detection of Trace Hydrogen Cyanide Gas

机译:CuO纳米结构作为用于检测痕量氰化氢气体的石英晶体微天平传感层

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, quartz crystal microbalance (QCM) sensors for detection of trace hydrogen cyanide (HCN) gas were developed based on nanostructural (flower-like, boat-like, ellipsoid-like, plate-like) CuO. Responses of all the sensors to HCN were found to be in an opposite direction as compared with other common volatile substances, offering excellent selectivity for HCN detection. The sensitivity of these sensors is dependent on the morphology of CuO nanostructures, among which the plate-like CuO has the highest sensitivity (2.26 Hz/ue). Comparison of the specific surface areas of CuO nanostructures shows that CuO of higher surface area (9.3 m2/g) is more sensitive than that of lower surface area (1.5 m2/g), indicating that the specific surface area of these CuO nanostructures plays an important role in the sensitivity of related sensors. On the basis of experimental results, a sensing mechanism was proposed in which a surface redox reaction occurs between CuO and Cu2O on the CuO nanostructures reversibly upon contact with HCN and air, respectively. The CuO-runctionalized QCM sensors are considered to be a promising candidate for trace HCN gas detection in practical applications.
机译:在这项工作中,基于纳米结构(花状,船状,椭球状,板状)CuO,开发了用于检测痕量氰化氢(HCN)气体的石英晶体微天平(QCM)传感器。与所有常见的挥发性物质相比,所有传感器对HCN的响应都处于相反的方向,为HCN检测提供了出色的选择性。这些传感器的灵敏度取决于CuO纳米结构的形貌,其中板状CuO具有最高的灵敏度(2.26 Hz / ue)。 CuO纳米结构的比表面积的比较表明,较高表面积(9.3 m2 / g)的CuO比较低表面积(1.5 m2 / g)的CuO敏感,表明这些CuO纳米结构的比表面积起着较大的作用。在相关传感器的灵敏度中起着重要作用。在实验结果的基础上,提出了一种传感机理,即当与HCN和空气接触时,CuO和Cu2O在CuO纳米结构上分别发生可逆的表面氧化还原反应。 CuO功能化的QCM传感器被认为是实际应用中痕量HCN气体检测的有前途的候选者。

著录项

  • 来源
    《Environmental Science & Technology》 |2011年第14期|p.6088-6094|共7页
  • 作者单位

    Functional Nanomaterials Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TechnicalInstitute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Zhongguancun Beiyitiao 2, Haidianqu, Beijing 100190, China,Graduate University of Chinese Academy of Sciences (CAS), Beijing 100049, China;

    Functional Nanomaterials Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TechnicalInstitute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Zhongguancun Beiyitiao 2, Haidianqu, Beijing 100190, China;

    The No. 3 Department, Institute of Chemical Defence, P.O. Box 1048, Beijing 102205, China;

    The No. 3 Department, Institute of Chemical Defence, P.O. Box 1048, Beijing 102205, China;

    The No. 3 Department, Institute of Chemical Defence, P.O. Box 1048, Beijing 102205, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:03:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号