首页> 外文期刊>Environmental Science & Technology >Microbial Community Composition during Anaerobic Mineralization of tert-Butyl Alcohol (TBA) in Fuel-Contaminated Aquifer Material
【24h】

Microbial Community Composition during Anaerobic Mineralization of tert-Butyl Alcohol (TBA) in Fuel-Contaminated Aquifer Material

机译:含燃料的含水层材料中叔丁基醇(TBA)厌氧矿化过程中的微生物群落组成

获取原文
获取原文并翻译 | 示例
       

摘要

Anaerobic mineralization of ferf-butyl alcohol (TBA) and methyl fert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3 ± 9.9% of [U-l4C]-TBA to 14CO_2 without electron acceptor amendment. Fe(lll), sulfate, and Fe(in) plus anthraquinone- 2,6-disulfonate addition also promoted U-[ I4C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-14C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(lll)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.
机译:在用受燃料污染的含水层材料制备的沉淀物中,研究了叔丁醇(TBA)和甲基叔丁基醚(MTBE)的厌氧矿化作用。所有培养中的微生物群落组成均通过核糖体DNA限制性酶切分析(ARDRA)进行表征。含水层材料在没有电子受体修饰的情况下将[U-1C] -TBA的42.3±9.9%矿化为14CO_2。 Fe(III),硫酸盐和Fe(in)加上蒽醌-2,6-二磺酸盐的添加也促进了U- [I4C] -TBA的矿化,其水平与未修改的对照相似。相对于未修改的对照,硝酸盐实际上抑制了TBA矿化。与TBA相比,[U-14C] -MTBE在400天内均未显着矿化,而与电子受体的修饰无关。微生物群落分析表明,一个优势克隆群的丰度与厌氧性TBA矿化密切相关。该克隆在系统发育上与已知的需氧降解TBA的微生物,Fe(III)或硫酸盐还原细菌不同。它与属于α变形蛋白细菌的生物最密切相关。在MTBE和TBA修正的培养中,微生物群落有所不同。 Shannon指数和Simpson指数(统计族群比较工具)均表明,在使TBA矿化的过程中,微生物群落多样性下降,并且形成了明显的“优势”克隆。这些数据有助于我们了解受污染的含水层材料中的燃料含氧化合物的厌氧微生物转化以及可能催化反应的生物。

著录项

  • 来源
    《Environmental Science & Technology》 |2011年第7期|p.3012-3018|共7页
  • 作者

    Na Wei; Kevin T. Finneran;

  • 作者单位

    Environmental Engineering and Earth Sciences, Clemson University, 168 Rich Laboratory, Anderson, South Carolina 29625,United States;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:03:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号