首页> 外文期刊>Environmental Science & Technology >Impact of Mycelia on the Accessibility of Fluorene to PAH-Degrading Bacteria
【24h】

Impact of Mycelia on the Accessibility of Fluorene to PAH-Degrading Bacteria

机译:菌丝体对芴对PAH降解细菌可及性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Mycelia have been recently shown to actively transport polycyclic aromatic hydrocarbons (PAH) in water-unsaturated soil over the range of centimeters, thereby efficiently mobilizing hydrophobic PAH beyond their purely diffusive transport in air and water. However, the question if mycelia-based PAH transport has an effect on PAH biodegradation was so far unsolved. To address this, we developed a laboratory model microcosm mimicking air-water interfaces in soil. Chemical analyses demonstrated transport of the PAH fluorene (FLU) by the mycelial oomycete Pythium ultimum that was grown along the air-water interfaces. Furthermore, degradation of mycelia-transported FLU by the bacterium Burkholderia sartisoli RP037-mChe was indicated. Since this organism expresses eGFP in response to a FLU flux to the cell, it was also as a bacterial reporter of FLU bioavailability in the vicinity of mycelia. Confocal laser scanning microscopy (CLSM) and image analyses revealed a significant increase of eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU. Hence, we could show that physically separated FLU becomes bioavailable to bacteria after transport by mycelia. Experiments with silicon coated glass fibers capturing mycelia-transported FLU guided us to propose a three-step mechanism of passive uptake, active transport and diffusion-driven release. These experiments were also used to evaluate the contributions of these individual steps to the overall mycelial FLU transport rate.
机译:最近显示,菌丝体可在不饱和土壤中在厘米范围内主动运输多环芳烃(PAH),从而有效地将疏水性PAH迁移到其在空气和水中的纯扩散运输范围之外。但是,到目前为止,尚未解决基于菌丝体的PAH转运是否对PAH生物降解产生影响的问题。为了解决这个问题,我们开发了一个模拟土壤中空气与水界面的实验室模型缩影。化学分析表明,PAH芴(FLU)由沿空气-水界面生长的菌丝体卵菌毕生腐霉(Pythium ultimum)迁移。此外,表明了由细菌伯克霍尔德氏菌RP037-mChe降解菌丝体运输的FLU。由于该生物体响应于FLU通向细胞而表达eGFP,因此它也是菌丝体附近FLU生物利用度的细菌报告基因。共聚焦激光扫描显微镜(CLSM)和图像分析显示,与没有菌丝体或FLU的对照相比,在存在体育极限球菌的情况下eGFP表达显着增加。因此,我们可以证明,经过菌丝体转运后,细菌分离出的FLU变得具有生物利用性。用硅涂层玻璃纤维捕获菌丝体运输的FLU进行的实验指导我们提出了被动吸收,主动运输和扩散驱动释放的三步机制。这些实验还用于评估这些单独步骤对总体菌丝FLU转运速率的贡献。

著录项

  • 来源
    《Environmental Science & Technology》 |2013年第13期|6908-6915|共8页
  • 作者单位

    Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany;

    Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany;

    Department of Fundamental Microbiology, University of Lausanne, Lausanne CH 1015, Switzerland;

    Department of Plant Pathology, University of California, Davis California 95616, United States;

    Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany;

    Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号