首页> 外文期刊>Environmental Science & Technology >Isolating a-Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic Aerosol Formation
【24h】

Isolating a-Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic Aerosol Formation

机译:分离A-PineNe臭氧溶解途径揭示了对过氧自由基化学和二次有机气溶胶形成的新见解

获取原文
获取原文并翻译 | 示例
       

摘要

α-Pinene ozonolysis is a key process that impacts the formation of new particles and secondary organic aerosol (SOA)in the atmosphere. The mechanistic understanding of this chemistry has been inconclusivedespite extensive research, hindering accurate simulations of atmospheric processes. In this work, we examine the ozonolysis of two synthesized unsaturated carbonyl isomers (C_(11)H_(18)O) which separately produce the two Criegee intermediates (CIs) that would form simultaneously in α-pinene ozonolysis. Direct gas-phase measurements of peroxy radicals (RO_2) from flowtube ozonolysis experiments by an iodide-adduct chemical ionization mass spectrometer suggest that the initial C_(10)H_(15)O_4· RO_2 from the CI with a terminal methyl ketone undergo autoxidation 20-fold faster than the CI with a terminal aldehyde and always outcompete the bimolecular reactions under typical laboratory and atmospheric conditions. These results provide experimental constraints on the detailed RO_2 autoxidation mechanisms for understanding new particle formation in the atmosphere. Further, isomer-resolved characterization of the SOA formed from a continuous-flow stirred tank reactor using ion mobility spectrometry mass spectrometry suggests that the two structurally different CIs predominantly and unexpectedly form constituents with identical structures. These results open up possibilities of diverse isomerization pathways that the two CIs may undergo that form mutual products to a large extent toward their way forming the SOA. This work highlights new insights into α-pinene ozonolysis pathways and call for future studies to uncover the detailed mechanisms.
机译:α-固烯臭氧溶解是一种关键过程,影响大气中新颗粒和二次有机气溶胶(SOA)的形成。对该化学的机械理解已经不确定了广泛的研究,妨碍了大气过程的准确模拟。在这项工作中,我们检查两个合成的不饱和羰基异构体的臭氧(C_(11)H_(18))),其分别产生将同时形成α-叉烯臭氧溶解的两个Criegee中间体(CIS)。通过碘化物加合物化学电离质谱仪从流动型臭氧的过氧化物(RO_2)的直接气相测量结果表明,来自CI的初始C_(10)H_(15)O_4·RO_2与末端甲基酮接受自动氧化20 - 比用末端醛的CI更快地搅拌,并始终在典型的实验室和大气条件下递增肌肉分子反应。这些结果为理解大气中的新粒子形成的详细RO_2自动氧化机制提供了实验约束。此外,使用离子迁移光谱法质谱法由连续流搅拌釜反应器形成的SOA的异构体分辨表征表明,两个结构不同的顺式主要和意外地形成具有相同结构的成分。这些结果开辟了各种异构化途径的可能性,即两种顺式可以在很大程度上在形成SOA的方式在很大程度上进行互联网。这项工作突出了新的洞察α-Pinene臭氧溶解路径,并呼吁未来的研究来揭示详细机制。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第10期|6700-6709|共10页
  • 作者单位

    Department of Chemistry University of California Riverside California 92S21 United States;

    Department of Chemistry University of California Riverside California 92521 United States;

    Department of Chemistry University of California Riverside California 92521 United States;

    Department of Life and Environmental Sciences University of California Merced California 95343 United States;

    Department of Chemistry University of California Riverside California 92521 United States Department of Chemistry University of Iowa Iowa City Iowa 52242 United States;

    Department of Chemistry University of California Riverside California 92S21 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号