首页> 外文期刊>Environmental Science & Technology >Integrated Model for Understanding N_2O Emissions from Wastewater Treatment Plants: A Deep Learning Approach
【24h】

Integrated Model for Understanding N_2O Emissions from Wastewater Treatment Plants: A Deep Learning Approach

机译:了解废水处理厂N_2O排放的集成模型:深入学习方法

获取原文
获取原文并翻译 | 示例
           

摘要

This study aims to demonstrate the application of deep learning to quantitatively describe long-term full-scale data observed from wastewater treatment plants (WWTPs) from the perspectives of process modeling, process analysis, and forecasting modeling. Approximately, 750,000 measurements including the influent flow rate, air flow rate, temperature, ammonium, nitrate, dissolved oxygen, and nitrous oxide (N_2O) collected for more than a year from the Avedore WWTP located in Denmark are utilized to develop a deep neural network (DNN) through supervised learning for process modeling, and the optimal DNN (R~2 > 0.90) is selected for further evaluation. For process analysis, global sensitivity analysis based on variance decomposition is considered to identify the key parameters contributing to high N_2O emission characteristics. For N_2O forecasting, the proposed DNN-based model is compared with long short-term memory (LSTM), showing that the LSTM-based forecasting model performs significantly better than the DNN-based model (R~2 > 0.94 and the root-mean-squared error is reduced by 64%). The results account for the feasibility of data-driven methods based on deep learning for quantitatively describing and understanding the rather complex N_2O dynamics in WWTPs. Research into hybrid modeling concepts integrating mechanistic models of WWTPs (e.g., ASMs) with deep learning would be suggested as a future direction for monitoring N_2O emissions from WWTPs.
机译:这项研究旨在证明深度学习的定量描述从流程建模,流程分析和预测建模的角度污水处理厂(污水处理厂)观察到长期的全面数据的应用程序。约,750,000次测量包括进水流量,空气流速,温度,铵,硝酸盐,溶解氧,并从位于丹麦Avedore WWTP收集一年多氧化亚氮(N_2O)被利用来开发一种深神经网络(DNN)通过监督学习过程建模,和最优DNN(R〜2> 0.90)被选择用于进一步的评估。进行工艺分析,基于方差分解全局灵敏度分析被认为是识别有助于高N_2O发射特性的关键参数。对于N_2O预测,所提出的基于DNN-模型与长短期记忆(LSTM)相比,呈现显著比基于DNN模型更好的是,基于LSTM预测模型进行(R〜2> 0.94,均方根-squared错误是由64%减少)。结果占了基于深度学习定量描述和污水处理厂理解相当复杂的动态N_2O数据驱动方法的可行性。研究混合建模概念整合污水处理厂机理模型(例如,的ASM)深学习将被建议作为用于从污水处理厂监测N_2O排放未来的方向。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第3期|2143-2151|共9页
  • 作者单位

    Process and Systems Engineering Center (PROSYS) Department of Chemical and Biochemical Engineering Technical University of Denmark 2800 Kgs. Lyngby Denmark Department of Chemical Engineering Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 South Korea;

    Process and Systems Engineering Center (PROSYS) Department of Chemical and Biochemical Engineering Technical University of Denmark 2800 Kgs. Lyngby Denmark;

    Process and Systems Engineering Center (PROSYS) Department of Chemical and Biochemical Engineering Technical University of Denmark 2800 Kgs. Lyngby Denmark;

    Process and Systems Engineering Center (PROSYS) Department of Chemical and Biochemical Engineering Technical University of Denmark 2800 Kgs. Lyngby Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号