首页> 外文期刊>Environmental Science & Technology >Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients
【24h】

Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients

机译:具有自然盐度梯度的反向电渗析发电的热力学,能效和功率密度分析

获取原文
获取原文并翻译 | 示例
       

摘要

Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ~33-44% can be obtained in RED, while the rest is lost through dissipation in the Internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, withouy significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining me power densities attainable. Lastiy, the performance of an BED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ~37% and an overall gross power density of 3.5 W/m~2 represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low-resistance ion exchange membranes (0.5 Ω cm~2) at very small spacing intervals (50 μm).
机译:当新鲜河水流入海中时,反向电渗析(RED)可以利用吉布斯的混合自由能进行可持续发电。在这项研究中,我们进行了RED发电的热力学和能效分析,并评估了膜的功率密度。首先,我们提出了一种可逆的RED热力学模型,并验证了可逆RED过程中理论上最大的可提取功与吉布斯混合自由能相同。然后检查使用恒定电阻负载以最大功率密度进行的不可逆过程中的功提取,以评估能量转换效率和功率密度。在海水和河水量相等的情况下,RED可获得的能量转换效率约为33-44%,而其余的能量则通过离子交换膜堆内部电阻的耗散而损失掉。我们表明,典型离子交换膜的选择性不完善(即共离子迁移,渗透和电渗透)会有害地降低效率高达26%,其中共离子泄漏是主要影响。 RED期间的功率密度曲线揭示了在过程结束时固有的无效性。通过明智地尽早停止受控混合过程,可以将整体功率密度性能提高多达7倍,而不会显着降低能源效率。另外,发现膜电阻是确定可达到的功率密度的重要因素。最后,针对不同的膜电导率和膜间距离,对BED堆的性能进行了测试,以模拟高性能膜和堆的设计。通过精心选择运行参数,效率约为37%,总总功率密度为3.5 W / m〜2,代表了具有低电阻离子交换功能的海水-河流水RED系统可能获得的最大性能。膜(0.5Ωcm〜2)且间隔很小(50μm)。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第9期|4925-4936|共12页
  • 作者单位

    Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States;

    Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands,Membrane Science & Technology, University of Twente, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands;

    Membrane Science & Technology, University of Twente, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands;

    Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:00:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号