首页> 外文学位 >Electrochemical energy generation from natural and synthetic salinity gradients using reverse electrodialysis and capacitive mixing.
【24h】

Electrochemical energy generation from natural and synthetic salinity gradients using reverse electrodialysis and capacitive mixing.

机译:使用逆电渗析和电容混合从天然和合成盐度梯度产生电化学能量。

获取原文
获取原文并翻译 | 示例

摘要

Salinity gradient energy (SGE) technologies are emerging systems designed to recover energy from engineered and natural mixing processes. Two electricity producing SGE systems are reverse electrodialysis (RED) and capacitive mixing (CapMix). RED captures mixing energy using a series of ion exchange membranes that drive electrochemical reactions at redox electrodes. CapMix utilizes polarizable electrodes to store charge in the surfaces electric double layer (EDL). Energy generation can then occur when the EDL is expanded and compressed in different concentration solutions.;The use of themolytic salt solutions (e.g. ammonium bicarbonate--AmB) within a RED system is promising, as AmB can be regenerated using low-grade waste--heat (e.g. 40--60°C). One disadvantage to using AmB is the potential for gas bubbles (CO2, NH3) to form within the stack. Accumulation of bubbles can impede ion migration, and reduce system performance. The management and minimization of gaseous bubbles in RED flow fields is an important operational issue, and has not previously been addressed within RED literature. Flow field design with and without spacers in a RED stack was analyzed to determine how fluid flow and geometry effected the accumulation and removal of bubbles. In addition, the performance changes, in terms of power and resistance were measured in the presence of bubbles. Gaseous bubble accumulation was minimized using short vertically aligned channels, which resulted in a reduction in the amount of the membrane area which was restricted due to bubbles from ~20% to 7%. The stack power density improved by 12% when all gaseous bubbles were removed from the cell.;AmB-RED systems can potentially produce hydrogen or electrical energy through altering the cathodic reaction. With a kinetically favorable cathodic reaction (oxygen reduction reaction), the projected electrical energy generated by a single pass AmB--RED system approached 78 Wh per m--3 (low concentrate). However, when RED was operated with the less kinetically favorable reaction (hydrogen evolution reaction), and hydrogen gas was harvested, the energy recovered increased by as much ~1.5 times to 118 Wh m--3 (low concentrate). Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 Wh m--3 (low concentrate) or a third of that produced through direct hydrogen generation. The flexibility of the RED architecture allows for the potential for simultaneous hydrogen and electricity production, whereas competing technologies such as PRO and CapMix only produce electricity.;Several approaches to generate electrical power using CapMix have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, it was shown that energy capture using synthetic river and seawater could be increased ~65 times, and power generation ~46 times, when compared to controls (no ionic fields). Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created this ionic flow field that enabled more effective passive charging of the capacitive electrodes, and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m--2 (capacitive electrode).;The amount of salinity gradient energy that can be obtained through capacitive--mixing based on double layer expansion (CDLE) also depends on the extent that the materials electric double layer (EDL) expands in a low concentration electrolyte (e.g. river water). I show here that the individual electrode rise potential, which is a measure of the EDL expansion process, significantly (P = 10 --5) depends on the concentration of strong acid surface functional groups. Electrodes with a low concentration of strong acid functional groups (0.05 mmol g--1) resulted in a positive--potential--rise of DeltaU+/-- = +59 +/- 4 mV (DeltaUcell = 16 +/- 0.7 mV) in synthetic river water, whereas activated carbons with high concentrations of strong acid groups (0.36 mmol g--1 ) produced a negative-potential-rise of DeltaU+/-- = --31 +/- 5 mV (DeltaUcell ~--11 +/- 1 mV). Dissimilar electrodes, which coupled a negative electrode with a high concentration of strong acid groups with positive electrode with a low concentrations of strong acid groups, produced a whole cell potential rise which was 5.7 times greater than produced with similar electrodes (from 15 +/- 0.2 to 89 +/- 3 mV). Therefore, tuning the surface chemistry of known materials can be conducted through a variety of methods (oxidation, ammonia treatment, etc.) to more optimally extract energy through CapMix processes.
机译:盐度梯度能量(SGE)技术是新兴的系统,旨在从工程和自然混合过程中回收能量。两种发电SGE系统是反向电渗析(RED)和电容混合(CapMix)。 RED使用一系列离子交换膜捕获混合能量,这些离子交换膜在氧化还原电极上驱动电化学反应。 CapMix利用可极化的电极将电荷存储在表面双电层(EDL)中。当EDL在不同浓度的溶液中膨胀和压缩时,就会发生能量产生。RED系统中使用热解盐溶液(例如碳酸氢铵-AmB)是有希望的,因为AmB可以使用低级废物再生。 -加热(例如40--60°C)。使用AmB的一个缺点是在烟囱中可能会形成气泡(CO2,NH3)。气泡的积累会阻碍离子迁移,并降低系统性能。 RED流场中气泡的管理和最小化是一个重要的操作问题,RED文献以前未曾讨论过。分析了在RED堆栈中有无间隔物的流场设计,以确定流体的流动和几何形状如何影响气泡的积累和去除。另外,在存在气泡的情况下,测量了功率和电阻方面的性能变化。使用短的垂直对齐的通道可最大程度地减少气泡的积累,这会导致膜面积的减少(由于气泡而造成的限制)从约20%降至7%。从电池中清除所有气泡后,电池堆的功率密度提高了12%。;AmB-RED系统可以通过改变阴极反应来潜在地产生氢或电能。通过动力学上有利的阴极反应(氧还原反应),单程AmB-RED系统产生的预计电能接近每m--3(低浓缩物)78 Wh。但是,当RED在动力学上不太有利的反应(放氢反应)下运行并收集氢气时,回收的能量增加了约1.5倍,达到118 Wh m--3(低浓)。通过将RED电池组与外部电解系统耦合来间接产生氢气仅能达到35 Wh m--3(低浓)或直接产生氢气的三分之一。 RED架构的灵活性允许同时产生氢气和电力,而竞争技术(例如PRO和CapMix只能产生电力)。;最近开发了几种使用CapMix产生电力的方法,但功率密度仍然很低。通过将电容性电极浸入生物电化学反应器中由放生电微生物产生的离子场中,与对照品(无离子场)相比,使用合成河流和海水捕获的能量可增加约65倍,发电约46倍。 。由于有机物的微生物氧化而产生的有利的电化学反应,再加上阴极处的氧气还原,产生了这种离子流场,从而使电容电极更有效地进行了无源充电,并实现了更高的能量捕获。这种基于离子的方法不限于使用河水,海水溶液。利用生物电化学系统产生的能量和热解溶液对电容电极进行强制充电,可将最大功率密度进一步提高至7 W m--2(电容电极)。通过电容可获取的盐度梯度能量-基于双层膨胀(CDLE)的混合还取决于材料双电层(EDL)在低浓度电解质(例如河水)中膨胀的程度。我在这里表明,单个电极的上升电位是EDL扩展过程的量度,显着(P = 10 --5)取决于强酸表面官能团的浓度。带有低浓度强酸官能团(0.05 mmol g--1)的电极会导致DeltaU + /-= +59 +/- 4 mV(DeltaUcell = 16 +/- 0.7 mV)的正电位上升)在合成河水中,而具有高浓度强酸基团(0.36 mmol g--1)的活性炭产生DeltaU + /-= --31 +/- 5 mV(DeltaUcell〜- 11 +/- 1 mV)。异质电极将高浓度强酸基团的负电极与低浓度强酸基团的正电极耦合,产生的整个电池电势升高是相似电极产生的5.7倍(从15 +/-开始) 0.2至89 +/- 3 mV)。因此,可以通过多种方法(氧化,氨处理等)进行已知材料的表面化学调节,以通过CapMix工艺更优化地提取能量。

著录项

  • 作者

    Hatzell, Marta C.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Engineering Environmental.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号