首页> 外文期刊>Environmental Science & Technology >Assessing the Influence of Secondary Organic versus Primary Carbonaceous Aerosols on Long-Range Atmospheric Polycyclic Aromatic Hydrocarbon Transport
【24h】

Assessing the Influence of Secondary Organic versus Primary Carbonaceous Aerosols on Long-Range Atmospheric Polycyclic Aromatic Hydrocarbon Transport

机译:评估次生有机气溶胶与主要碳质气溶胶对远程大气多环芳烃迁移的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We use the chemical transport model GEOS- Chem to evaluate the hypothesis that atmospheric polycyclic aromatic hydrocarbons (PAHs) are trapped in secondary organic aerosol (SOA) as it forms. We test the ability of three different partitioning configurations within the model to reproduce observed total concentrations in the midlatitudes and the Arctic as well as midlatitude gas-particle phase distributions. The configurations tested are the GEOS- Chem default configuration, which uses instantaneous equilibrium partitioning to divide PAHs among the gas phase, a primary organic matter (OM) phase (absorptive), and a black carbon (BC) phase (adsorptive), an SOA configuration in which PAHs are trapped in SOA when emitted and slowly evaporate from SOA thereafter, and a configuration in which PAHs are trapped in primary OM/BC upon emission and subsequently slowly evaporate. We also test the influence of changing the fraction of PAHs available for particle-phase oxidation. Trapping PAHs in SOA particles upon formation and protecting against particle-phase oxidation better simulates observed remote concentrations compared to our default configuration . However, simulating adsorptive partitioning to BC is required to reproduce the magnitude and seasonal pattern of gas-particle phase distributions. Thus, the last configuration results in the best agreement between observed and simulated concentration/phase distribution data. The importance of BC rather than SOA to PAH transport is consistent with strong observational evidence that PAHs and BC are coemitted.
机译:我们使用化学迁移模型GEOS-Chem来评估以下假设:大气中的多环芳烃(PAHs)形成时被捕获在次级有机气溶胶(SOA)中。我们测试了模型中三种不同分区配置的能力,以重现中纬度和北极以及中纬度气体颗粒相分布中观测到的总浓度。测试的配置为GEOS-Chem默认配置,该配置使用瞬时平衡分配在气相,主要有机物(OM)相(吸收性)和黑碳(BC)相(吸收性),SOA之间分配PAH。其中,PAHs在发射时被捕集在SOA中,然后从SOA缓慢蒸发,而PAHs在发射时被捕集在主OM / BC中,然后缓慢蒸发。我们还测试了改变可用于颗粒相氧化的PAHs比例的影响。与我们的默认配置相比,在形成SOA颗粒时捕获PAH并防止颗粒相氧化更好地模拟了观察到的偏远浓度。但是,需要模拟到BC的吸附分配,以重现气相颗粒相分布的大小和季节模式。因此,最后的配置导致观察到的和模拟的浓度/相分布数据之间的最佳一致性。 BC而不是SOA对PAH传输的重要性与强有力的观察证据一致,即PAH和BC共同存在。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第6期|3293-3302|共10页
  • 作者单位

    Center for Global Change Science and Leading Technology and Policy Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States;

    Engineering Systems Division and Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号