首页> 外文期刊>Environmental Science & Technology >Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal-Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments
【24h】

Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal-Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments

机译:了解基于MIL-101(Cr)的阴离子交换金属有机骨架上的PFOA吸附:将DFT计算与水吸附实验进行比较

获取原文
获取原文并翻译 | 示例
       

摘要

To examine the effects of different functionaliza-tion methods on adsorption behavior, anionic-exchange MIL-101(Cr) metal-organic frameworks (MOFs) were synthesized using preassembled modification (PAM) and postsynthetic modification (PSM) methods. Perfluorooctanoic acid (PFOA) adsorption results indicated that the maximum PFOA adsorption capacity was 1.19 and 1.89 nunol g~(-1) for anionic-exchange MIL-101(Cr) prepared by PAM and PSM, respectively. The sorption equilibrium was rapidly reached within 60 min. Our results indicated that PSM is a better modification technique for introducing functional groups onto MOFs for adsorptive removal because PAM places functional groups onto the aperture of the nanopore, which hinders the entrance of organic contaminants. Our experimental results and the results of complementary density functional theory calculations revealed that in addition to the anion-exchange mechanism, the major PFOA adsorption mechanism is a combination of Lewis acid/base complexation between PFOA and Cr(Ⅲ) and electrostatic interaction between PFOA and the protonated carboxyl groups of the bdc (terephthalic acid) linker.
机译:为了检查不同功能化方法对吸附行为的影响,使用预组装修饰(PAM)和合成后修饰(PSM)方法合成了阴离子交换MIL-101(Cr)金属有机骨架(MOF)。全氟辛酸(PFOA)的吸附结果表明,PAM和PSM制备的阴离子交换MIL-101(Cr)的最大PFOA吸附能力分别为1.19和1.89 nunol g〜(-1)。在60分钟内迅速达到吸附平衡。我们的结果表明,PSM是将功能性基团引入MOF进行吸附去除的更好的修饰技术,因为PAM将功能性基团置于纳米孔的孔径上,这会阻止有机污染物的进入。我们的实验结果和互补密度泛函理论计算的结果表明,除阴离子交换机理外,主要的PFOA吸附机理是PFOA和Cr(Ⅲ)之间的路易斯酸/碱络合以及PFOA和Cr之间的静电相互作用的结合。 bdc(对苯二甲酸)接头的质子化羧基。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第14期|8657-8665|共9页
  • 作者单位

    School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China;

    School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China;

    School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China;

    School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China;

    School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China;

    School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:59:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号