首页> 外文期刊>Environmental Science & Technology >Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation
【24h】

Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation

机译:用于水修复的流通电极中取决于孔结构的传质

获取原文
获取原文并翻译 | 示例
       

摘要

Hierarchical three-dimensional architectures of granphene-based materials with tailored microstructure and functionality exhibit unique mass transport behaviors and tunable active sites for various applications. The micro-anochannels in the porous structure can act as micro-ano- reactors, which optimize the transport and conversion of contaminants. However, the size-effects of the micro-anochannels, which are directly related to its performance in electrochemical processes, have not been explored. Here, using lamellar-structured graphene films as electrodes, we demonstrate that the interlayer spacing (range from similar to 84 nm to similar to 2.44 mu m) between graphene nanosheets governs the mass transport and electron transfer in electrochemical processes; subsequently influence the water decontamination performances. The microchannel (interlayer spacing = similar to 2.44 mu m) can provide higher active surface areas, but slow reaction kinetics. Densely packed graphene nanosheets (interlayer spacing = similar to 280 nm), which possessed better electron conductivity and could provide higher surface-area-to-volume ratio in narrow nanochannels (7.14 mu m(-1)), achieved the highest reaction kinetics. However, the ion-accessible surface area was decreased in highly dense films (interlayer spacing = similar to 84 nm) due to serious interlayer stacking of graphene nanosheets, thereby leading poor reaction kinetics. These results demonstrate the size-effect of nanochannels in porous materials and highlight the importance of controlling mass transport and electron transfer for optimal electrochemical performance, enabling a deep understanding of the benefits and utilization of these hierarchical three-dimensional architectures in water purification.
机译:具有定制的微观结构和功能的基于Granphene的材料的三维三维体系结构表现出独特的传质行为和可调整的活性位点,可用于各种应用。多孔结构中的微/纳米通道可以充当微/纳米反应器,从而优化污染物的传输和转化。然而,尚未研究与微通道/纳米通道在电化学过程中的性能直接相关的尺寸效应。在这里,使用层状结构的石墨烯薄膜作为电极,我们证明了石墨烯纳米片之间的层间距(范围从约84 nm到约2.44μm)决定了电化学过程中的质量传递和电子传递。随后会影响水的去污性能。微通道(中间层间距=约2.44微米)可提供更高的活性表面积,但反应动力学较慢。密集堆积的石墨烯纳米片(层间距=类似于280 nm)具有更好的电子传导性,并且可以在狭窄的纳米通道(7.14μm(-1))中提供更高的表面积/体积比,实现了最高的反应动力学。然而,由于石墨烯纳米片的严重的层间堆叠,在高密度膜中(层间距=接近84 nm)离子可及的表面积减小,从而导致不良的反应动力学。这些结果证明了多孔材料中纳米通道的尺寸效应,并强调了控制质量传输和电子转移以实现最佳电化学性能的重要性,从而使人们能够深入理解这些分级三维结构在水净化中的益处和利用。

著录项

  • 来源
    《Environmental Science & Technology》 |2018年第13期|7477-7485|共9页
  • 作者单位

    Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China;

    Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China;

    Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China;

    Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:56:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号