首页> 外文期刊>Environmental Science & Technology >Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation
【24h】

Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation

机译:微生物生物质和腐殖酸对非生物和生物磁铁矿形成的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Magnetite (Fe_3O_4) is an environmentally ubiquitous mixed-valent iron (Fe) mineral, which can form via biotic or abiotic transformation of Fe(III) (oxyhydr)oxides such as ferrihydrite (Fh). It is currently unclear whether environmentally relevant biogenic Fh from Fe(II)-oxidizing bacteria, containing cell-derived organic matter, can transform to magnetite. We compared abiotic and biotic transformation: (1) abiogenic Fh (aFh); (2) abiogenic Fh coprecipitated with humic acids (aFh-HA); (3) biogenic Fh produced by phototrophic Fe(II)-oxidizer Rhodobacter ferrooxidans SW2 (bFh); and (4) biogenic Fh treated with bleach to remove biogenic organic matter (bFh-bleach). Abiotic or biotic transformation of Fh was promoted by Fe_(aq)_(2+) or Fe(III)-reducing bacteria. Fe_(aq)_(2+)-catalyzed abiotic reaction with aFh and bFh-bleach led to complete transformation to magnetite. In contrast, aFh-HA only partially (68%) transformed to magnetite, and bFh (17%) transformed to goethite. We hypothesize that microbial biomass stabilized bFh against reaction with Fe_(aq)_(2+). All four Fh substrates were transformed into magnetite during biotic reduction, suggesting that Fh remains bioavailable even when associated with microbial biomass. Additionally, there were poorly ordered magnetic components detected in the biogenic end products for aFh and aFh-HA. Nevertheless, abiotic transformation was much faster than biotic transformation, implying that initial Fe_(aq)_(2+) concentration, passivation of Fh, and/or sequestration of Fe(II) by bacterial cells and associated biomass play major roles in the rate of magnetite formation from Fh. These results improve our understanding of factors influencing secondary mineralization of Fh in the environment.
机译:磁铁矿(Fe_3O_4)是一种在环境上普遍存在的混合价铁(Fe)矿物,可以通过对Fe(III)(羟基)氧化物(例如三水铁矿(Fh))进行生物或非生物转化而形成。目前尚不清楚环境中与Fe(II)氧化的细菌相关的生物Fh是否可以转化为磁铁矿,其中Fh(II)氧化细菌含有细胞衍生的有机物。我们比较了非生物转化和生物转化:(1)生源性Fh(aFh); (2)与腐殖酸(aFh-HA)共沉淀的非生物Fh; (3)由光养性Fe(II)-氧化剂氧化铁红细菌SW2(bFh)产生的生物Fh; (4)用漂白剂处理过的生物Fh,以去除生物有机质(bFh-漂白剂)。 Fe_(aq)_(2+)或Fe(III)还原菌可促进Fh的非生物或生物转化。 Fe_(aq)_(2+)催化的aFh和bFh漂白的非生物反应导致完全转化为磁铁矿。相反,aFh-HA仅部分(68%)转变为磁铁矿,bFh(17%)转变为针铁矿。我们假设微生物生物量稳定bFh反对与Fe_(aq)_(2+)的反应。在生物还原过程中,所有四种Fh底物均转化为磁铁矿,这表明Fh即使与微生物生物量结合也保持了生物利用度。此外,在生物终产物中检测到的aFh和aFh-HA的磁性成分差。尽管如此,非生物转化要比生物转化快得多,这意味着细菌细胞和相关生物量的初始Fe_(aq)_(2+)浓度,Fh的钝化和/或Fe(II)的螯合在该速率中起主要作用。 Fh形成磁铁矿。这些结果提高了我们对影响环境中Fh二次矿化的因素的理解。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第7期|4121-4130|共10页
  • 作者单位

    Biogeomagnetism Group Kev Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics and France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms Chinese Academy of Sciences Beijing 100029 China Geomicrobiology Center for Applied Geosciences University of Tuebingen Tuebingen 72074 Germany College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing 100049 China;

    Geomicrobiology Center for Applied Geosciences University of Tuebingen Tuebingen 72074 Germany;

    Biogeomagnetism Group Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics and France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms Chinese Academy of Sciences Beijing 100029 China College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing 100049 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号