首页> 外文期刊>Environmental Science & Technology >Role of Near-Electrode Solution Chemistry on Bacteria Attachment and Poration at Low Applied Potentials
【24h】

Role of Near-Electrode Solution Chemistry on Bacteria Attachment and Poration at Low Applied Potentials

机译:低电极电位下近电极溶液化学对细菌附着和穿孔的作用

获取原文
获取原文并翻译 | 示例
           

摘要

This research investigated mechanisms for biofouling control at boron-doped diamond (BDD) electrode surfaces polarized at low applied potentials (e.g., -0.2 to 1.0 V vs Ag/AgCl), using Pseudotnonas aeruginosa as a model organism. Results indicated that electrostatic interactions between bacteria and ionic electrode functional groups facilitated bacteria attachment at the open-circuit potential (OCP). However, under polarization, the applied potential governed these electrostatic interactions and electrochemical reactions resulted in surface bubble formation and near-surface pH modulation that decreased surface attachment under anodic conditions. The poration of the attached bacteria occurred at OCP conditions and increased with the applied potential. Scanning electrochemical microscopy (SECM) provided near-surface pH and oxidant formation measurements under anodic and cathodic polarizations. The near-surface pH was 3.1 at 1.0 V vs Ag/AgCl and 8.0 at —0.2 V vs Ag/AgCl and was possibly a contributor to bacteria poration. Interpretation of SECM data using a reactive transport model allowed for a better understanding of the near-electrode chemistry. Under cathodic conditions, the primary oxidant formed was H_2O_2, and under anodic conditions, a combination of H_2O_2, Cl_2, HO_2, Cl_2~-, and Cl_2 formations likely contributed to bacteria poration at potentials as low as 0.5 V vs Ag/AgCl.
机译:这项研究使用铜绿假单胞菌作为模型生物,研究了在低施加电势(例如,相对于Ag / AgCl的-0.2至1.0 V)下极化的掺硼金刚石(BDD)电极表面的生物污染控制机制。结果表明,细菌与离子电极官能团之间的静电相互作用促进了细菌在开路电位(OCP)处的附着。但是,在极化作用下,施加的电势控制着这些静电相互作用,电化学反应导致表面气泡的形成和近表面pH调节,从而降低了阳极条件下的表面附着。附着细菌的穿孔发生在OCP条件下,并随着施加的电位而增加。扫描电化学显微镜(SECM)提供了在阳极和阴极极化下近表面的pH和氧化剂形成的测量结果。与Ag / AgCl相比,近表面pH在1.0 V时为3.1,在相对于Ag / AgCl的-0.2 V下,近表面pH为8.0,这可能是细菌渗透的原因。使用反应性传输模型解释SECM数据可以更好地理解近电极化学。在阴极条件下,形成的主要氧化剂为H_2O_2,而在阳极条件下,H_2O_2,Cl_2,HO_2,Cl_2〜-和Cl_2形成的组合可能以低至0.5 V的电位(相对于Ag / AgCl)促成细菌的渗透。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第1期|446-455|共10页
  • 作者

  • 作者单位

    Department of Chemical Engineering University of Illinois at Chicago 945 West Taylor Street Chicago Illinois 60607 United States;

    MSU-Fraunhofer Center for Coatings and Diamond Technologies 1449 Engineering Research Court East Lansing Michigan 48824 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号