首页> 外文期刊>Environmental Science & Technology >Evaluating Computational and Structural Approaches to Predict Transformation Products of Polycyclic Aromatic Hydrocarbons
【24h】

Evaluating Computational and Structural Approaches to Predict Transformation Products of Polycyclic Aromatic Hydrocarbons

机译:评价计算和结构方法以预测多环芳烃的转化产物

获取原文
获取原文并翻译 | 示例
           

摘要

Polycyclic aromatic hydrocarbons (PAHs) undergo transformation reactions with atmospheric photochemical oxidants, such as hydroxyl radicals (OH center dot), nitrogen oxides (NOx), and ozone (O-3). The most common PAH-transformation products (PAH-TPs) are nitrated, oxygenated, and hydroxylated PAHs (NPAHs, OPAHs, and OHPAHs, respectively), some of which are known to pose potential human health concerns. We sampled four theoretical approaches for predicting the location of reactive sites on PAHs (i.e., the carbon where atmospheric oxidants attack), and hence the chemoselectivity of the PAHs. All computed results are based on density functional theory (B3LYP/6-31G(d) optimized structures and energies). The four approaches are (1) Clar's prediction of aromatic resonance structures, (2) thermodynamic stability of all OHPAH adduct intermediates, (3) computed atomic charges (Natural Bond order, ChelpG, and Mulliken) at each carbon on the PAH, and (4) average local ionization energy (ALIE) at atom or bond sites. To evaluate the accuracy of these approaches, the predicted PAH-TPs were compared to published laboratory observations of major NPAH, OPAH, and OHPAH products in both gas and particle phases. We found that the Clar's resonance structures were able to predict the least stable rings on the PAHs but did not offer insights in terms of which individual carbon is most reactive. The OHPAH adduct thermodynamics and the ALIE approaches were the most accurate when compared to laboratory data, showing great potential for predicting the formation of previously unstudied PAH-TPs that are likely to form in the atmosphere.
机译:多环芳烃(PAH)与大气中的光化学氧化剂发生转化反应,例如羟基自由基(OH中心点),氮氧化物(NOx)和臭氧(O-3)。最常见的PAH转化产物(PAH-TP)是硝化,氧化和羟基化的PAH(分别为NPAH,OPAH和OHPAH),其中某些已知会引起潜在的人类健康隐患。我们采样了四种理论方法来预测PAHs上反应位点的位置(即大气中氧化剂攻击的碳),从而预测PAHs的化学选择性。所有计算结果均基于密度泛函理论(B3LYP / 6-31G(d)优化的结构和能量)。四种方法是(1)Clar对芳族共振结构的预测,(2)所有OHPAH加合物中间体的热力学稳定性,(3)PAH上每个碳原子的计算原子电荷(自然键序,ChelpG和Mulliken),以及( 4)原子或键位处的平均局部电离能(ALIE)。为了评估这些方法的准确性,将预测的PAH-TP与气相和颗粒相中主要NPAH,OPAH和OHPAH产品的公开实验室观察结果进行了比较。我们发现Clar的共振结构能够预测PAH上最不稳定的环,但无法提供有关哪个碳最活泼的见解。与实验室数据相比,OHPAH加合物的热力学和ALIE方法最准确,显示出预测在大气中可能形成的未经研究的PAH-TP的巨大潜力。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第3期|1595-1607|共13页
  • 作者单位

    Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA|Orebro Univ, Sch Sci & Technol, Man Technol Environm MTM Res Ctr, S-70182 Orebro, Sweden;

    Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA|Ecole Normale Super Lyon, 46 Allee Italie, F-69364 Lyon 07, France;

    Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA;

    Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA|Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA;

    Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA|Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA;

    Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号