首页> 外文期刊>Environmental Science & Technology >Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies
【24h】

Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies

机译:全球敏感性分析,以表征电容去离子技术的操作极限并确定性能目标

获取原文
获取原文并翻译 | 示例
           

摘要

Capacitive deionization (CDI) technologies couple electronic and ionic charge storage, enabling improved thermodynamic efficiency of brackish desalination by recovering energy released during discharge. However, insight into CDI has been limited by discrete experimental observations at low desalination depths (Delta c, typically reducing influent salinity by 10 mM or less). In this study, the performance and sensitivity of three common CDI configurations [standard CDI, membrane CDI (MCDI), and flowable electrode CDI (FCDI)] were evaluated across the operational and material design landscape by varying eight common input parameters (electrode thickness, influent concentration, current density, electrode flow rate, specific capacitance, contact resistance, porosity, and fixed charge). All combinations of designs were evaluated for two influent concentrations with a calibrated and validated one-dimensional (1-D) porous electrode model. Sensitivity analyses were carried out via Monte Carlo and Morris methods, focusing on six performance metrics. Across all performance metrics, high sensitivity was observed to input parameters which impact cycle length (current, resistance, and capacitance). Simulations demonstrated the importance of maintaining both charge and round-trip efficiencies, which limit the performance of CDI and FCDI, respectively. Accounting for energy recovery, only MCDI was capable of operating at thermodynamic efficiencies similar to reverse osmosis.
机译:电容去离子(CDI)技术结合了电子和离子电荷存储,可通过回收放电过程中释放的能量来提高微咸淡化的热力学效率。但是,对CDI的了解受到低淡化深度(Δc,通常使进水盐度降低10 mM或更小)的离散实验观察所限制。在这项研究中,通过改变八个共同的输入参数(电极厚度,电极厚度,进水浓度,电流密度,电极流速,比电容,接触电阻,孔隙率和固定电荷)。使用经过校准和验证的一维(1-D)多孔电极模型,评估了设计的所有组合的两种进水浓度。通过蒙特卡洛和莫里斯方法进行了敏感性分析,重点是六个性能指标。在所有性能指标中,观察到对影响周期长度(电流,电阻和电容)的输入参数的高灵敏度。仿真表明,保持充电效率和往返效率非常重要,这分别限制了CDI和FCDI的性能。考虑到能量回收,只有MCDI能够以类似于反渗透的热力学效率运行。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第7期|3748-3756|共9页
  • 作者单位

    Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA|Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA|Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA|Univ Illinois, Computat Sci & Engn Program, Urbana, IL 61801 USA;

    Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号