首页> 外文期刊>Environmental progress >Cathode Modification to Enhance the Performance of In-Situ Fenton Oxidation in Microbial Fuel Cells
【24h】

Cathode Modification to Enhance the Performance of In-Situ Fenton Oxidation in Microbial Fuel Cells

机译:阴极改性以增强微生物燃料电池中原位Fenton氧化的性能

获取原文
获取原文并翻译 | 示例
       

摘要

Microbial fuel cell (MFC) is a sustainable and energy efficient technology, which uses graphite as cathode for hydrogen peroxide (H_2O_2) production often with simultaneous power production. Nevertheless, slow kinetics of oxygen reduction reaction (ORR) at the surface of graphite often results in poor performance of MFC. In an attempt to improve the performance of MFC for in-situ H_20_2 production, a treatment of graphite cathode using nitric acid was performed. The treatment was conducted in three steps (i) heat treatment at 450°C for 2 b; (ii) acid treatment with concentrated nitric acid for 5 b; and (iii) drying at I20°C for 2 b. After the treatment, four times increase in surface area of treated cathode (GR-HA) was observed. Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) analysis revealed the presence of nitrogen and quinone based functional groups on the surface of GR-HA. Cyclic voltammetric (CV) analysis of GR-HA cathode further confirmed the production of H_20_2 at the peak current value of -3-7 mA and on-set potential of -0.1 V. Following CV analysis, H_20_2 production experiments were performed in a dual chamber MFC using GR-HA as cathode. Maximum 150 mg/L of H_20_2 was produced with simultaneous power production of 36.438 mW/m~2. Approximately, 25% increase in both H_20_2 and power production was observed in the case of G cathode. Subsequently, Fenton oxidation experiments were performed (with GR-HA and GR-CA cathodes) to determine the efficacy of in-situ produced H_20_2. This resulted in an increase of 8.28%, 11.04%, and 31.32% in decolorization, chemical oxygen demand (COD), and Total Organic Carbon (TOC) removal efficiency, respectively.
机译:微生物燃料电池(MFC)是一种可持续且节能的技术,该技术使用石墨作为阴极来生产过氧化氢(H_2O_2),通常同时发电。但是,石墨表面的氧还原反应(ORR)动力学缓慢通常会导致MFC的性能下降。为了改善用于原位H_20_2生产的MFC的性能,进行了使用硝酸的石墨阴极的处理。该处理分三个步骤进行:(i)在450℃下热处理2b; (ii)用浓硝酸酸处理5b; (iii)在20℃下干燥2b。处理后,观察到处理后的阴极(GR-HA)的表面积增加了四倍。能量色散X射线光谱(EDX)和傅里叶变换红外(FTIR)分析表明,GR-HA表面存在基于氮和醌的官能团。 GR-HA阴极的循环伏安(CV)分析进一步证实了在峰值电流值为-3-7 mA和启动电位为-0.1 V时H_20_2的产生。在进行CV分析之后,在双重条件下进行了H_20_2的产生实验GR-HA作为阴极的MFC室。最高产量为150 mg / L H_20_2,同时发电量为36.438 mW / m〜2。在G阴极的情况下,观察到H_20_2和功率产生均增加约25%。随后,进行Fenton氧化实验(使用GR-HA和GR-CA阴极),以确定原位产生的H_20_2的功效。这分别使脱色,化学需氧量(COD)和总有机碳(TOC)去除效率分别提高了8.28%,11.04%和31.32%。

著录项

  • 来源
    《Environmental progress》 |2017年第2期|382-393|共12页
  • 作者单位

    Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia;

    Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia;

    Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia;

    Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    microbial fuel cell; m-situ hydrogen peroxide; fenton oxidation; nitrogen doping; oxygen reduction reaction;

    机译:微生物燃料电池间位过氧化氢;芬顿氧化氮掺杂氧还原反应;
  • 入库时间 2022-08-17 13:26:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号