首页> 外文期刊>Environmental Pollution >Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods
【24h】

Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods

机译:化学质量平衡和放射性碳法在中国深圳的细颗粒物有机碳源分配

获取原文
获取原文并翻译 | 示例
           

摘要

Chemical mass balance (CMB) modeling and radiocarbon measurements were combined to evaluate the sources of carbonaceous fine particulate matter (PM2.5) in Shenzhen, China during and after the 2011 summer Universiade games when air pollution control measurements were implemented to achieve air quality targets. Ambient PM2.5 filter samples were collected daily at two sampling sites (Peking University Shenzhen campus and Longgang) over 24 consecutive days, covering the controlled and uncontrolled periods. During the controlled period, the average PM2.5 concentration was less than half of what it was after the controls were lifted. Organic carbon (OC), organic molecular markers (e.g., levoglucosan, hopanes, polycyclic aromatic hydrocarbons), and secondary organic carbon (SOC) tracers were all significantly lower during the controlled period. After pollution controls ended, at Peking University, OC source contributions included gasoline and diesel engines (24%), coal combustion (6%), biomass burning (12.2%), vegetative detritus (2%), biogenic SOC (from isoprene, alpha-pinene, and beta-caryophyllene; 7.1%), aromatic SOC (23%), and other sources not included in the model (25%). At Longgang after the controls ended, similar source contributions were observed: gasoline and diesel engines (23%), coal combustion (7%), biomass burning (17.7%), vegetative detritus (1%), biogenic SOC (from isoprene, alpha-pinene, and beta-caryophyllene; 53%), aromatic SOC (13%), and other sources (33%). The contributions of the following sources were smaller during the pollution controls: biogenic SOC (by a factor of 10-16), aromatic SOC (4-12), coal combustion (1.5-6.8), and biomass burning (23-4.9). CMB model results and radiocarbon measurements both indicated that fossil carbon dominated over modern carbon, regardless of pollution controls. However, the CMB model needs further improvement to apportion contemporary carbon (i.e. biomass burning, biogenic SOC) in this region. This work defines the major contributors to carbonaceous PM2.5 in Shenzhen and demonstrates that control measures for primary emissions could significantly reduce secondary organic aerosol (SOA) formation. (C) 2018 Elsevier Ltd. All rights reserved.
机译:结合化学物质平衡(CMB)建模和放射性碳测量,以评估2011年夏季世界大学生运动会期间和之后中国深圳的碳质细颗粒物(PM2.5)的来源,当时实施了空气污染控制测量以实现空气质量目标。连续24天每天在两个采样点(北京大学深圳校区和龙岗)采集环境PM2.5过滤器样品,涵盖受控和非受控时期。在控制期内,平均PM2.5浓度低于对照组解除后的平均浓度。在控制期内,有机碳(OC),有机分子标记(例如左旋葡聚糖,hop烷,多环芳烃)和次级有机碳(SOC)示踪剂均显着降低。在污染控制结束之后,在北京大学,OC来源包括汽油和柴油发动机(24%),燃煤(6%),生物质燃烧(12.2%),植物性碎屑(2%),生物源SOC(来自异戊二烯,α -pine烯和β-石竹烯; 7.1%),芳烃SOC(23%)和模型中未包括的其他来源(25%)。在控制结束后的龙岗,观察到相似的来源贡献:汽油和柴油发动机(23%),煤炭燃烧(7%),生物质燃烧(17.7%),植物碎屑(1%),生物源SOC(来自异戊二烯,α -pine烯和β-石竹烯; 53%),芳烃SOC(13%)和其他来源(33%)。在污染控制过程中,以下来源的贡献较小:生物SOC(10-16倍),芳香SOC(4-12),燃煤(1.5-6.8)和生物质燃烧(23-4.9)。 CMB模型结果和放射性碳测量结果均表明,无论采用何种污染控制措施,化石碳均胜过现代碳。但是,CMB模型需要进一步改进以分摊该地区的当代碳(即生物质燃烧,生物碳SOC)。这项工作确定了深圳含碳PM2.5的主要贡献者,并表明对主要排放的控制措施可以显着减少次要有机气溶胶(SOA)的形成。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号