首页> 外文期刊>Environmental Monitoring and Assessment >Determining representative ranges of point sensors in distributed networks
【24h】

Determining representative ranges of point sensors in distributed networks

机译:确定分布式网络中点传感器的代表性范围

获取原文
获取原文并翻译 | 示例
       

摘要

Distributed networks of stationary instruments provide high temporal scope (i.e., range/resolution) observations but are spatially limited as a set of point measurements. Measurement similarity between points typically decays with distance, which is used to set interpolation distances. The importance of analyzing spatiotemporal data at equivalent spatial and temporal scales has been identified but no standard procedure is used to interpolate space using temporally-indexed observations. Using concurrent mobile and stationary active acoustic, fish density data from a tidal energy site in Puget Sound, WA, USA, six methods are compared to estimate the range at which stationary measurements can be spatially interpolated. Four methods estimate the representative range of the mean using autocorrelation or paired t-test and repeated measures ANOVA. Accuracy of resulting sensor density estimates was modeled as departures from interpolated linear and aerial estimates. Two methods were used to estimate representative range of the variance by comparing theoretical spectra or by determining equivalent spatial and temporal scales. Representative ranges of means extended from 30.57 to 403.9 m. Estimation error (i.e., standard deviation) ranges of linearly interpolated or aerially extrapolated values ranged from 42.5 to 82.3%. Representative ranges using variance measurements differed by a factor of approximately two (scale equivalence = 648.7 m, theoretical = 1388.1 m). A six-step decision tree is presented to guide identification of monitoring variables and choice of method to calculate representative ranges in distributed networks. This approach is applicable for networks of any size, in aquatic or terrestrial environments, and monitoring the mean or variance of any quantity.
机译:固定式仪器的分布式网络可提供较高的时间范围(即范围/分辨率)观测值,但在空间上受一组点测量的限制。点之间的测量相似度通常随距离而衰减,该距离用于设置插值距离。已经确定了在等效的时空尺度上分析时空数据的重要性,但是没有使用标准程序来使用时标索引的观测值对空间进行插值。使用来自美国华盛顿州普吉特海湾潮汐能站点的同时移动和静止主动声学鱼密度数据,比较了六种方法,以估计可以对空间测量值进行空间插值的范围。四种方法使用自相关或配对t检验以及重复测量方差分析来估计均值的代表性范围。将所得传感器密度估算值的准确性建模为与内插线性和空中估算值的偏差。通过比较理论谱图或确定等效的时空尺度,使用两种方法来估计方差的代表性范围。代表性的手段范围从30.57扩大到403.9 m。线性内插或空中外插值的估计误差(即标准差)范围为42.5%至82.3%。使用方差测量的代表性范围相差大约两倍(比例当量= 648.7 m,理论值= 1388.1 m)。提出了一个六步决策树,以指导监视变量的识别以及分布式网络中代表范围的计算方法的选择。此方法适用于水上或陆地环境中任何规模的网络,并监视任何数量的均值或方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号