...
首页> 外文期刊>Environmental Monitoring and Assessment >Optimize the preparation of Fe_3O_4-modified magnetic mesoporous biochar and its removal of methyl orange in wastewater
【24h】

Optimize the preparation of Fe_3O_4-modified magnetic mesoporous biochar and its removal of methyl orange in wastewater

机译:优化Fe_3O_4改性磁性介孔生物炭的制备及其在废水中除去甲基橙

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, Eichhornia Crassipes stems were used as biomass feedstock, and Fe2+ was used as the precursor solution to prepare Fe3O4-modified magnetic mesoporous biochar (Fe3O4@BC). By using Box-Behnken design (BBD) response surface methodology, the influences of three preparation parameters (X-1=Fe2+ concentration, X-2=pyrolysis temperature and X-3=pyrolysis time) on the adsorption of methyl orange (MO) by Fe3O4@BC were investigated, and a reliable response surface model was constructed. The results show that X1X2 and X1X3 have a significant influence on the adsorption of MO by Fe3O4@BC. The surface area and pore volume of Fe3O4@BC are controlled by all preparation parameters. The increase of pyrolysis time will significantly reduce the -OH on the surface of Fe3O4@BC and weaken its MO adsorption capacity. Through the numerical optimization of the constructed model, the optimal preparation parameters of Fe3O4@BC can be obtained as follows: Fe2+ concentration = 0.27 mol/L, pyrolysis temperature = 405 degrees C, and pyrolysis time = 3.2 h. The adsorption experiment shows that the adsorption of Fe3O4@BC to MO is a spontaneous exothermic process, and the adsorption capacity is maximum when pH = 4. The adsorption kinetics and adsorption isotherms of Fe3O4@BC to MO conform to the pseudo-second-order kinetics and Sips model, respectively. Mechanism analysis shows that electrostatic interaction and H bond formation are the main forces for Fe3O4@BC to adsorb MO. This research not only realizes a new way of resource utilization of Eichhornia Crassipes biomass but also enriches the preparation research of magnetic biochar.
机译:本文使用Eichhornia沉默茎作为生物质原料,使用Fe2 +作为前体溶液制备Fe3O4改性的磁性介孔Biochar(Fe3O4 @ Bc)。通过使用Box-Behnken设计(BBD)响应面方法,对三种制备参数(X-1 = Fe2 +浓度,X-2 =热解温和X-3 =热解时间)的影响对甲基橙(MO)的吸附通过FE3O4 @ BC进行了研究,构建了可靠的响应表面模型。结果表明,X1X2和X1X3对Fe3O4 @ BC对Mo的吸附有显着影响。 Fe3O4 @ BC的表面积和孔体积由所有制备参数控制。热解时间的增加将显着减少Fe3O4 @ BC表面的-OH,并削弱其Mo吸附能力。通过构建模型的数值优化,可以如下获得Fe3O4 @ BC的最佳制备参数:Fe2 +浓度= 0.27mol / L,热解温= 405℃,热解时间= 3.2h。吸附实验表明,Fe3O4 @ BC至Mo的吸附是自发放热过程,当pH = 4时,吸附能力最大。Fe3O4 @ BC至Mo的吸附动力学和吸附等温度符合伪二阶。动力学和啜饮模型分别。机制分析表明,静电相互作用和H键形成是Fe3O4 @ BC吸附Mo的主要力。本研究不仅实现了Eichhornia沉思生物量的新资源利用方式,而且丰富了磁性生物炭的制备研究。

著录项

  • 来源
    《Environmental Monitoring and Assessment》 |2021年第4期|179.1-179.20|共20页
  • 作者单位

    Anhui Polytech Univ Sch Chem & Environm Engn Wuhu 241000 Peoples R China;

    Anhui Polytech Univ Sch Chem & Environm Engn Wuhu 241000 Peoples R China;

    Anhui Polytech Univ Sch Architecture & Civil Engn Wuhu 241000 Peoples R China;

    Anhui Polytech Univ Sch Architecture & Civil Engn Wuhu 241000 Peoples R China;

    Anhui Polytech Univ Sch Architecture & Civil Engn Wuhu 241000 Peoples R China;

    Anhui Polytech Univ Sch Architecture & Civil Engn Wuhu 241000 Peoples R China;

    Anhui Polytech Univ Sch Architecture & Civil Engn Wuhu 241000 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fe3O4; Biochar; Methyl orange; Response surface; Electrostatic interaction;

    机译:Fe3O4;生物炭;甲基橙;响应面;静电相互作用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号