首页> 外文期刊>Environmental earth sciences >Numerical study on hydraulic fracturing in different types of georeservoirs with consideration of (HM)-M-2-coupled leak-off effects
【24h】

Numerical study on hydraulic fracturing in different types of georeservoirs with consideration of (HM)-M-2-coupled leak-off effects

机译:考虑(HM)-M-2耦合渗流效应的不同类型储层水力压裂数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

With the increase in the world's energy consumption and the change in climate, unconventional energy resources become more and more popular. Since geological formations of low or ultra-low permeability are usually involved, hydraulic fracturing is one of the most important tools for their exploitation. The objective of this paper is to investigate hydraulic fracturing and its hydro-mechanical influences on different types of georeservoirs, including tight gas, oil, and geothermal reservoirs. Based on the previous work of hydraulic fracturing simulation with FLAC3D(plus), the multi-phase multi-component flow simulator TOUGH2MP is coupled for the numerical study. A new coupling approach is designed with special consideration of the (HM)-M-2-coupled process in different types of georeservoirs. For the simulation, a generic 3D 1/4 model (200 9 300 9 200 m, consisting of 50 m caprock, 100 m reservoir formation, and 50 m base rock) is adopted. The simulations are run under comparable reservoir and operative conditions. The results show that fracture propagation and proppant concentration are comparable with a short period of slurry injection (80 min 9 x m(3) / min). The fracturing fluid does not penetrate deep into the formation. Due to the high compressibility of gas, the induced pore pressure is much lower than that in oil and geothermal reservoirs, although the final leak-off ratio is comparable. The hydraulic fracturing causes stress reorientation in georeservoirs. According to the criterion of 5 degrees stress reorientation, the minimum fracture spacing for a multiple fracture system in the assumed geothermal reservoir is 73 m, while that in an oil and gas reservoir is 66 and 60 m, respectively. This work expands on the numerical simulator as well as the understanding of hydraulic fracturing in unconventional georeservoirs. The results of this study can be used further to optimize the fracture spacing in a multiple hydraulic fracture system in different reservoir types.
机译:随着世界能源消耗的增加和气候的变化,非常规能源越来越受欢迎。由于通常涉及低渗透率或超低渗透率的地质构造,因此水力压裂是对其进行开发的最重要工具之一。本文的目的是研究水力压裂及其对各种类型的地质储层(包括致密气,石油和地热储层)的水力力学影响。基于FLAC3D(plus)进行水力压裂模拟的先前工作,耦合了多相多组分流动模拟器TOUGH2MP进行数值研究。设计了一种新的耦合方法,其中特别考虑了在不同类型的地质储层中的(HM)-M-2-耦合过程。对于模拟,采用了通用的3D 1/4模型(200 9 300 9 200 m,由50 m盖层,100 m储集层和50 m基岩组成)。模拟是在可比较的油藏和作业条件下进行的。结果表明,裂缝扩展和支撑剂浓度与短时间注浆(80分钟9 x m(3)/分钟)相当。压裂液不会深入地层。由于气体的高可压缩性,尽管最终的泄漏比是可比的,但诱导的孔隙压力远低于石油和地热储层中的孔隙压力。水力压裂导致地质储层中的应力重新定向。根据5度应力重新定向的标准,假设的地热储层中多裂缝系统的最小裂缝间距为73 m,而油气储层中的最小裂缝间距分别为66 m和60 m。这项工作扩展了数值模拟器以及对非常规地质储层中水力压裂的理解。这项研究的结果可进一步用于优化不同油藏类型的多水力压裂系统中的压裂间距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号