首页> 外文期刊>Environmental Engineering Science >Reply to Comment on “Behavior of Charged Particles in a Biological Cell Exposed to AC-DC Electromagnetic Fields” and on “Comparison Between Two Models of Interaction Between Electric and Magnetic Fields and Proteins in Cell Membranes”
【24h】

Reply to Comment on “Behavior of Charged Particles in a Biological Cell Exposed to AC-DC Electromagnetic Fields” and on “Comparison Between Two Models of Interaction Between Electric and Magnetic Fields and Proteins in Cell Membranes”

机译:对“暴露于AC-DC电磁场的生物细胞中带电粒子的行为”以及“细胞膜中电场和磁场与蛋白质相互作用的两种模型之间的比较”的评论答复

获取原文
获取原文并翻译 | 示例
       

摘要

Tnhe article by Halgamuge and Abeyrathne (2011) investigates the behavior of charged particles in a biologicalncell when exposed to various combinations of AC and DCnelectromagnetic fields. First, it should be pointed out thatnthe authors present a treatment of the effects of electric andnmagnetic forces on the displacement, mainly on free chargednparticles and less on bound ion charged particles. It can benaccurately compared with the ion cyclotron resonance (ICR)ntheory, but not with the ion parametric resonance (IPR) theorynof Lednev, which is based on completely different assumptions such as (1) polarization of bound ion orbits by magneticnfields (2) electric interactions between the bound ion and thenprotein. All the calculations by Halgamuge and Abeyrathnen(2011) were performed assuming extremely low viscosities orndrag (k = 10 to 1000 Sn- 1n) and the consequences of highernviscosities (k = 10n14nSn- 1n) are only treated in the discussion. Thenresonance behavior disappears for higher drag, as predictednby Liboff and Lednev from ICR and IPR theories. The studynby Halgamuge and Abeyrathne (2011) neither supports thenion force-vibration theory comprehensively nor is qualified tondo so, since it does not discuss what order of magnitudendisplacement of ions is needed in order to elicit a biologicalneffect when considering higher viscosity medium with actualnbody drag.
机译:Halgamuge和Abeyrathne(2011)的Tnhe文章研究了当暴露于AC和DCn电磁场的各种组合时,生物细胞中带电粒子的行为。首先,应该指出的是,作者对电磁力对位移的影响进行了处理,主要是对自由带电粒子的影响,对结合离子带电粒子的影响较小。它可以与离子回旋共振(ICR)理论进行比较,而不能与Lednev的离子参量共振(IPR)理论进行比较,后者基于完全不同的假设,例如(1)磁场对束缚离子轨道的极化(2)电结合离子与蛋白质之间的相互作用Halgamuge和Abeyrathnen(2011)进行的所有计算均假设粘度极低(k = 10至1000 Sn-1n),较高粘度的后果(k = 10n14nSn-1n)仅在讨论中进行了处理。然后,如IbR和IPR理论中的Liboff和Lednev所预言的,共振行为随着阻力的增加而消失。 Halgamuge和Abeyrathne(2011)的研究既没有全面支持大分子力振动理论,也没有获得合格的声子,因此,它没有讨论在考虑具有较高人体阻力的高粘度介质时,为了引起生物学效应,需要多少离子位移量级。

著录项

  • 来源
    《Environmental Engineering Science》 |2011年第10期|p.753-754|共2页
  • 作者单位

    1Departments of Medical Radiation Physics, Lund University, Lund, Sweden.2Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Australia.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:30:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号