...
首页> 外文期刊>Engineering Structures >Patch loading in slender and high depth steel panels: FEM-DOE analyses and bridge launching application
【24h】

Patch loading in slender and high depth steel panels: FEM-DOE analyses and bridge launching application

机译:细长和高深度钢板中的修补加载:FEM-DOE分析和桥梁下水应用

获取原文
获取原文并翻译 | 示例
           

摘要

This paper studies the optimum way to design both type and position of the stiffeners when a steel bridge is assembled by means of the new protect-patented launching method based on a self-supporting deck system. This procedure is able to launch bridge up to a span of 150 m, in an economical and sustainable way. The main objective of this research paper is to numerically analyze the best stiffener combination and distribution along the length of bridge, both longitudinally and transversally, in order to avoid the patch-loading phenomenon in the slender webs. An optimum design of a triangular cell along the lower plate is also presented. Thus the best stiffener distribution along the deck can be achieved to solve the two most important factors during the launching of a steel bridge: the huge forces on the support section - higher than the serviceability limit state - and buckling instability due to the point loads on the bearings. In this way, a three dimensional finite element model (FEM) is built and the design of experiments technique (DOE) is applied to obtain the best stiffener configuration. The numerical simulation allows the exact definition of the response of the structure to be achieved, covering the gaps and limits which are common in some national and international codes. Very good results have been obtained, in terms of deflection, patch loading resistance and vertical load distribution on the support section. Finally, the most important conclusions of this work are given.
机译:本文研究了一种基于自支撑甲板系统的新型保护专利发射方法来设计钢桥时设计加劲肋类型和位置的最佳方法。此过程能够以经济且可持续的方式启动跨度达150 m的桥梁。本研究的主要目的是对纵向和横向的最佳加强筋组合和沿桥梁长度的分布进行数值分析,以避免细长腹板上的补片加载现象。还介绍了沿下部平板的三角形单元的最佳设计。因此,可以实现沿甲板的最佳加劲肋分布,以解决钢桥发射过程中的两个最重要的因素:支撑段上的巨大力(高于使用极限状态)以及由于点荷载而导致的屈曲不稳定性。轴承。通过这种方式,建立了三维有限元模型(FEM),并应用了实验技术(DOE)的设计以获得最佳的加劲肋配置。数值模拟可以实现对结构响应的精确定义,涵盖一些国家和国际法规中常见的空白和限制。就挠曲,贴片负载阻力和支撑部分上的垂直负载分布而言,已经获得了非常好的结果。最后,给出了这项工作最重要的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号