...
首页> 外文期刊>Engineering Structures >General solution for shear strength estimate of RC elements based on panel response
【24h】

General solution for shear strength estimate of RC elements based on panel response

机译:基于面板响应的RC构件抗剪强度估算的通用解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The capacity of structural systems subjected to shear loads commonly distinguished by discontinuities such as point loads or supports, or abrupt changes of cross section, where complex fields of stresses and strains are generated, is vital information for design. Four structural systems that present stress concentration due to applied shear loads are commonly short walls, deep beams, corbels and beam-column joints. In the present work a model is developed to predict the shear capacity of these elements based on a panel model that considers average strain and stresses in a reinforced concrete orthotropic material, which covers the section of the structural element subjected to stress concentration. In addition, the panel element complies with the longitudinal equilibrium, by equalizing the applied axial load with the internal stresses of the structural element, requiring constitutive material laws for both concrete and steel reinforcement. The original model that has shown good shear strength prediction requires solving the non-linear equation of vertical equilibrium. Thus, this work eliminates the need to solve the iterative problem for the capacity estimation of four possible limit states (failure of concrete in tension and compression, and yielding of longitudinal web and boundary reinforcement). For that, an expression is calibrated for the strain of the model with respect to relevant parameters, for each limit state, that allow the generation of a non-iterative model. The model results in an average predicted capacity over experimental capacity ratio,Vmodel/Vtest, of 1.0 and a COV of 0.25, with similar performance for all four structural systems. When comparing these results with the general model that requires an iterative method, a similar performance is observed, with an average strength ratio and COV of 0.98 and 0.23, respectively. Likewise, in comparison with the ACI 318, the latter shows worse predictions (on average 24% lower) and with greater scatter (on average 28% higher). The expression in AASHTO code presents better correlation than ACI with predictions closer the proposed model.
机译:结构系统承受剪切载荷的能力通常以点载荷或支撑之类的不连续性为特征,而截面的突变会在其中产生复杂的应力和应变,这对于设计至关重要。由于施加的剪切载荷而出现应力集中的四个结构系统通常是短壁,深梁,牛腿梁和梁柱节点。在本工作中,基于面板模型开发了一个模型来预测这些元件的剪切能力,该面板模型考虑了钢筋混凝土正交异性材料中的平均应变和应力,该材料覆盖了受应力集中的结构单元的截面。另外,面板元件通过使施加的轴向载荷与结构元件的内应力相等,从而符合纵向平衡,这要求混凝土和钢筋都需要本构材料定律。表现出良好的抗剪强度预测效果的原始模型需要求解垂直平衡的非线性方程。因此,这项工作消除了解决迭代问题的需要,以评估四种可能的极限状态(混凝土在拉伸和压缩状态下的破坏以及纵向腹板和边界钢筋的屈服)。为此,针对每个极限状态的相关参数,针对模型的应变对表达式进行校准,以允许生成非迭代模型。该模型的平均预测容量相对于实验容量比率Vmodel / Vtest为1.0,COV为0.25,所有四个结构系统的性能均相似。将这些结果与需要迭代方法的通用模型进行比较时,观察到了相似的性能,平均强度比和COV分别为0.98和0.23。同样,与ACI 318相比,后者显示的预测更差(平均降低了24%),分散性更高(平均提高了28%)。 AASHTO代码中的表达式比ACI具有更好的相关性,并且预测与拟议模型更接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号