...
首页> 外文期刊>Engineering Structures >High resolution operational modal analysis on a five-story smart building under wind and human induced excitation
【24h】

High resolution operational modal analysis on a five-story smart building under wind and human induced excitation

机译:风和人为激励下的五层智能建筑的高分辨率运行模态分析

获取原文
获取原文并翻译 | 示例

摘要

The Goodwin Hall Smart Infrastructure facility at Virginia Tech is a five-story "smart building" with an integrated network of 225 wired accelerometers. This study utilizes a subset of 117 sensors to perform Operational Modal Analysis (OMA) of the structure under wind excitation and establish a high-resolution benchmark modal characterization. Frequency Spatial Domain Decomposition and Stochastic Subspace Identification results are compared to validate the extracted modal parameters. Twelve structural modes were identified, including five high frequency local modes. These local modes are crucial features for structures with complex geometries and can generally be identified only with high density instrumentation. Through a parametric analysis and the use of standard deviation estimates, we determine that 50-60 min time series were optimal for high confidence on frequency and damping estimates. Furthermore, we employ standard deviation estimates to improve existing OMA automation methods. This enables continuous modal parameter extraction over a four-day period to understand the characteristics of the two main forms of ambient excitation: wind and human-induced. Although similar continuous analyses have been conducted on bridges, few of this kind exist for buildings. In general, we observe that modal participation of the three fundamental modes is closely tied to wind and human activity and that the confidence in frequency and damping estimates of these modes improves as the excitation increases. Slight decreases in natural frequency with increasing participation occur for several modes, agreeing with behavior observed in bridge monitoring studies. Finally, wind is seen to excite primarily in one direction, whereas humans induce even excitation in all directions.
机译:弗吉尼亚理工大学的Goodwin Hall智能基础设施设施是一栋五层楼的“智能建筑”,具有225个有线加速度计的集成网络。这项研究利用117个传感器的子集在风激励下对结构进行操作模态分析(OMA),并建立了高分辨率基准模态表征。比较频率空间域分解和随机子空间识别结果,以验证提取的模态参数。确定了十二种结构模式,包括五个高频局部模式。这些局部模式是具有复杂几何形状的结构的关键特征,通常只能通过高密度仪器才能识别。通过参数分析和使用标准偏差估计,我们确定50-60分钟的时间序列对于频率和阻尼估计的高置信度是最佳的。此外,我们采用标准偏差估算来改进现有的OMA自动化方法。这使得能够在四天的时间内连续进行模态参数提取,以了解两种主要形式的环境激发的特征:风和人为激发。尽管已经对桥梁进行了类似的连续分析,但对于建筑物几乎没有这种分析方法。总的来说,我们观察到三种基本模式的模态参与与风和人类活动密切相关,并且随着激励的增加,对这些模式的频率和阻尼估计的置信度也会提高。在几种模式下,自然频率随参与度的增加而略有下降,这与桥梁监测研究中观察到的行为一致。最后,看到风主要在一个方向上激发,而人类则在所有方向上激发均匀的激发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号