首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process
【24h】

Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process

机译:多项式神经网络的多目标进化优化用于炸药切割过程的建模和预测

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, evolutionary algorithms (EAs) are deployed for multi-objective Pareto optimal design of group method of data handling (GMDH)-type neural networks which have been used for modelling an explosive cutting process using some input-output experimental data. In this way, multi-objective EAs (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity-preserving mechanism are used for Pareto optimization of such GMDH-type neural networks. The important conflicting objectives of GMDH-type neural networks that are considered in this work are, namely, training error (TE), prediction error (PE), and number of neurons (N) of such neural networks. Different pairs of theses objective functions are selected for 2-objective optimization processes. Therefore, optimal Pareto fronts of such models are obtained in each case which exhibit the trade-off between the corresponding pair of conflicting objectives and, thus, provide different non-dominated optimal choices of GMDH-type neural networks models for explosive cutting process. Moreover, all the three objectives are considered in a 3-objective optimization process, which consequently leads to some more non-dominated choices of GMDH-type models representing the trade-offs among the training error, prediction error, and number of neurons (complexity of network), simultaneously. The overlay graphs of these Pareto fronts also reveal that the 3-objective results include those of the 2-objective results and, thus, provide more optimal choices for the multi-objective design of GMDH-type neural networks in terms of minimum training error, minimum prediction error, and minimum complexity.
机译:在本文中,将进化算法(EA)部署到数据处理分组方法(GMDH)型神经网络的多目标Pareto优化设计中,该方法已用于使用一些输入输出实验数据对炸药切割过程进行建模。这样,具有新的多样性保留机制的多目标EA(非支配排序遗传算法,NSGA-II)被用于此类GMDH型神经网络的Pareto优化。这项工作中考虑的GMDH型神经网络的重要冲突目标是训练误差(TE),预测误差(PE)和此类神经网络的神经元数量(N)。选择不同的这些目标函数对用于2目标优化过程。因此,在每种情况下都获得了此类模型的最优Pareto前沿,这些最优Pareto前沿展现了在对应的一对冲突目标之间的取舍,从而为爆炸切割过程提供了不同的GMDH型神经网络模型的非主导最优选择。此外,在三个目标的优化过程中考虑了所有三个目标,因此导致了GMDH型模型的更多非主导选择,这些模型代表了训练误差,预测误差和神经元数量(复杂度)之间的权衡网络)。这些Pareto前沿的叠加图还揭示了3个目标结果包括2个目标结果,因此就最小训练误差而言,为GMDH型神经网络的多目标设计提供了更多最佳选择,最小的预测误差和最小的复杂度。

著录项

  • 来源
  • 作者单位

    Department of Mechanical Engineering, Faculty of Engineering, The University of Guilan, P.O. Box 3756, Rasht, IRAN;

    Department of Mechanical Engineering, Faculty of Engineering, The University of Guilan, P.O. Box 3756, Rasht, IRAN Intelligent-based Experimental Mechanics Center of Excellence, School of Mechanincal Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran;

    Department of Mechanical Engineering, Faculty of Engineering, The University of Guilan, P.O. Box 3756, Rasht, IRAN;

    Faculty of Mechanical Engineering, University of Tehran, Tehran, Iran;

    Department of Mechanical Engineering, Faculty of Engineering, The University of Guilan, P.O. Box 3756, Rasht, IRAN;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    explosive cutting; multi-objective optimization; genetic algorithms; GMDH; pareto;

    机译:爆炸切割多目标优化;遗传算法;GMDH;帕雷托;
  • 入库时间 2022-08-17 13:25:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号