首页> 外文期刊>Engineering Applications of Artificial Intelligence >Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering
【24h】

Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering

机译:基于高斯混合模型的动态概率聚类的机床状态监测

获取原文
获取原文并翻译 | 示例
       

摘要

The combination of artificial intelligence with data, computing power, and new algorithms can provide important tools for solving engineering problems, such as machine-tool condition monitoring. However, many of these problems require algorithms that can perform in highly dynamic scenarios where the data streams have extremely high sampling rates from different types of variables. The unsupervised learning algorithm based on Gaussian mixture models called Gaussian-based dynamic probabilistic clustering (GDPC) is one of these tools. However, this algorithm may have major limitations if a large amount of concept drifts associated with transients occurs within the data stream. GDPC becomes unstable under these conditions, so we propose a new algorithm called GDPC+ to increase its robustness. GDPC+ represents an important improvement because we introduce: (a) automatic selection of the number of mixture components based on the Bayesian information criterion (BIC), and (b) concept drift transition stabilization based on Cauchy-Schwarz divergence integrated with the Dickey-Fuller test. Thus, GDPC+ can perform better in highly dynamic scenarios than GDPC in terms of the number of false positives. The behavior of GDPC+ was investigated using random synthetic data streams and in a real data stream-based condition monitoring obtained from a machine-tool that produces engine crankshafts at high speed. We found that the initial temporal window size can be used to adapt the algorithm to different analytical requirements. The clustering results were also investigated by induction of the rules generated by the repeated incremental pruning to produce error reduction (RIPPER) algorithm in order to provide insights from the underlying monitored process and its associated concept drifts.
机译:人工智能与数据,计算能力和新算法的结合可以为解决工程问题提供重要工具,例如机床状态监测。但是,这些问题中的许多问题都要求算法能够在高度动态的场景中执行,这些场景中的数据流具有来自不同类型变量的极高采样率。这些工具之一就是基于称为高斯的动态概率聚类(GDPC)的基于高斯混合模型的无监督学习算法。但是,如果在数据流中发生大量与瞬态相关的概念漂移,则此算法可能有很大的局限性。在这种情况下,GDPC变得不稳定,因此我们提出了一种称为GDPC +的新算法,以提高其鲁棒性。 GDPC +是一项重要的改进,因为我们引入了:(a)基于贝叶斯信息准则(BIC)自动选择混合物组分的数量,以及(b)基于结合了Dickey-Fuller的柯西-舒瓦兹散度的概念漂移过渡稳定化测试。因此,就误报的数量而言,GDPC +在高动态情况下的性能要优于GDPC。 GDPC +的行为是使用随机的合成数据流以及从以高速生产发动机曲轴的机床获得的基于真实数据流的状态监视下进行研究的。我们发现,初始时间窗口大小可用于使算法适应不同的分析要求。还通过归纳由重复增量修剪生成的规则以产生误差减少(RIPPER)算法来研究聚类结果,以便从底层受监视的过程及其相关的概念漂移中获得见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号