首页> 外文期刊>Energy >Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations
【24h】

Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations

机译:使用CFD分析和实验研究,进气歧管设计对转换为LPG气体燃料的客车柴油发动机的缸内流量和发动机性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Diesel engines, especially for trucks and buses, cause many economical and ecological problems. Diesel exhaust emissions are a major source of pollution in most urban centers around the world. Furthermore, the price of crude oil continues to increase rapidly. The use of alternative fuels (liquified petroleum gas, LPG and compressed natural gas, CNG) and the optimization of combustion present effective solutions. Improving combustion is directly related to improving the intake aerodynamic movements which is influenced by the inlet system, especially the intake manifold. In this paper we have studied the geometry effects of two intake manifolds on the in-cylinder flows by two methods, numerically and experimentally. These two manifolds are mounted on a fully instrumented, six-cylinder, 13.81 displacement, heavy duty, IVECO engine, installed at the authors' laboratory, which is used to power the urban bus diesel engines in Sfax. This engine was modified to bi-fuel spark ignition engine gasoline and gas fuelling. The 1st manifold presents an unspecified geometry whereas the 2nd presents an optimal filling geometry. A three-dimensional numerical modeling of the turbulent in-cylinder flow through the two manifolds was undertaken. The model is based on solving Navier-Stokes and energy equations in conjunction with the standard k-t turbulence model, using the 3D CFD code FloWorks. This modeling made it possible to provide a fine knowledge of in-flow structures, in order to examine the adequate manifold. Experimental measurements are also carried out to validate this manifold by measuring the important engine performances. Brake power (BP), brake torque (BT) and brake thermal efficiency (BTE), are increased by 16%, 13.9%, and 12.5%, respectively, using optimal manifold. The brake specific fuel consumption (BSFC) is reduced by 28%. Simulation and experiments results confirmed the benefits of the optimized manifold geometry on the in-cylinder flow and engine performances.
机译:柴油发动机,特别是用于卡车和公共汽车的柴油发动机,引起许多经济和生态问题。柴油机废气排放是世界上大多数城市中心的主要污染源。此外,原油价格继续快速上涨。使用替代燃料(液化石油气,LPG和压缩天然气,CNG)以及优化燃烧是有效的解决方案。改善燃烧与改善进气空气动力学运动直接相关,进气运动尤其受进气系统的影响,尤其是进气歧管。在本文中,我们通过数值和实验两种方法研究了两个进气歧管对缸内流动的几何影响。这两个歧管安装在作者实验室安装的功能齐全的六缸13.81排量重型IVECO发动机上,该发动机用于为Sfax的城市客车柴油发动机提供动力。该发动机经过改装,可使用双燃料火花点火发动机进行汽油和天然气加油。第一个歧管呈现不确定的几何形状,而第二个歧管呈现最佳的填充几何形状。对通过两个歧管的缸内湍流进行了三维数值模拟。该模型基于使用3D CFD代码FloWorks结合标准k-t湍流模型求解Navier-Stokes和能量方程式的基础。该模型可以提供有关流入结构的详细知识,以便检查足够的歧管。还通过测量重要的发动机性能来进行实验测量以验证该歧管。使用最佳歧管,制动功率(BP),制动扭矩(BT)和制动热效率(BTE)分别提高了16%,13.9%和12.5%。制动器比油耗(BSFC)降低了28%。仿真和实验结果证实了优化的歧管几何形状对缸内流量和发动机性能的好处。

著录项

  • 来源
    《Energy》 |2011年第5期|p.2701-2715|共15页
  • 作者单位

    Laboratory of the Electromechanical Systems, National School Engineers of Sfax, BP 1173, Avenue of Soukra, 3038 Sfax, Tunisia;

    Laboratory of the Electromechanical Systems, National School Engineers of Sfax, BP 1173, Avenue of Soukra, 3038 Sfax, Tunisia;

    Laboratory of the Electromechanical Systems, National School Engineers of Sfax, BP 1173, Avenue of Soukra, 3038 Sfax, Tunisia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    alternative fuels cfd intake manifold in-flow model of turbulence experiment;

    机译:替代燃料cfd进气歧管湍流实验入流模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号