...
首页> 外文期刊>Energy >CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion
【24h】

CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion

机译:使用离子传输膜进行氧燃料燃烧的新型反应堆设计的CFD(计算流体动力学)分析

获取原文
获取原文并翻译 | 示例

摘要

Conventional two-channel ITM (ion transport membrane) reactors applied to oxy-combustion, face the potential drawback of high thermal gradients and high local temperatures, which can result in membrane damage. In such reactors, air flows on the feed side and fuel are introduced on the permeate side, where it reacts with the permeated oxygen. In this work, we propose to use a three-channel configuration in which a porous plate is used to separate the permeate stream from the fuel stream, allowing the fuel to diffuse gradually into the permeate side. The gradual combustion of the fuel results in a slow temperature rise and a more spatially uniform temperature distribution along the membrane. We model this three-channel reactor using computational fluid dynamics and compare its performance to a conventional two-channel reactor. It is shown that, indeed, in case of a two-channel reactor, a high temperature zone is concentrated near the inlet, whereas the three-channel reactor produces a milder temperature gradient along the reactor length. The more-uniform heat flux associated with the latter results in a moderate temperature distribution and reduction in the wall shear stress along the channels and the associated pressure drop. The more uniform temperature distribution should be less damaging to the membrane. The reaction zone associated with the gradual fuel diffusion into the sweep side improves the membrane performance by maintaining a more uniform oxygen flux.
机译:应用于氧燃烧的常规两通道ITM(离子迁移膜)反应器面临着高热梯度和高局部温度的潜在缺陷,这可能会导致膜损坏。在这样的反应器中,空气在进料侧流动,而燃料在渗透侧引入,在此处它与渗透的氧气反应。在这项工作中,我们建议使用三通道配置,其中使用多孔板将渗透物流与燃料物流分离,使燃料逐渐扩散到渗透物流侧。燃料的逐渐燃烧导致缓慢的温度上升和沿膜的空间分布更均匀。我们使用计算流体动力学对该三通道反应堆进行建模,并将其性能与常规的两通道反应堆进行比较。结果表明,实际上,在两通道反应器的情况下,入口附近集中有高温区域,而三通道反应器沿反应器长度会产生较缓和的温度梯度。与后者相关的更均匀的热通量导致适度的温度分布,并降低沿通道的壁切应力和相关的压降。温度分布越均匀,对膜的损害就越小。与燃料逐渐扩散到吹扫侧相关的反应区通过保持更均匀的氧气通量来改善膜性能。

著录项

  • 来源
    《Energy 》 |2014年第12期| 932-944| 共13页
  • 作者单位

    KACST TIC #32-753, KACST and Mechanical Engineering Department, KFUPM, Dhahran, 31261, Saudi Arabia;

    KACST TIC #32-753, KACST and Mechanical Engineering Department, KFUPM, Dhahran, 31261, Saudi Arabia;

    KACST TIC #32-753, KACST and Mechanical Engineering Department, KFUPM, Dhahran, 31261, Saudi Arabia;

    Department of Mechanical Engineering, University of British Colombia, Vancouver, BC, V6T 1Z4, Canada;

    Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ion transport membrane; Reactors; Oxy-fuel combustion;

    机译:离子传输膜反应堆;含氧燃料燃烧;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号