...
首页> 外文期刊>Energy >Optimal sizing of distributed generation in gas/electricity/heat supply networks
【24h】

Optimal sizing of distributed generation in gas/electricity/heat supply networks

机译:燃气/电力/热力供应网络中分布式发电的最佳规模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Multi-energy supply systems are expected to play an important role in smart grids. Today's energy supply systems are large nodes networks, and different types of energy are needed at each node to satisfy the different energy demands. These different types of energy can then be converted to each other through specific devices. How to decide the ratings of these devices at each node to make the system cost-effective is addressed in this paper. The focus is set on a gas/electricity/heat hybrid network. A hydrogen storage system (fuel cell, electrolyzer, and tanks) is used as electricity storage system, a combined heat and power device is used to produce heat and electric power, etc. A mixed integer linear programming algorithm is used to determine the optimal operation schedule of the system, where the goal is to minimize shed load. A genetic algorithm is also used to search for the best size of each component, where the goal is to minimize the total investment costs. In order to resist to contingency events, betweenness centrality (describing the relative importance of each node) is then used to find the worst case under contingency events. This worst case scenario is used to research about the influence of contingencies on the sizing results. At last, two cases (modified 13-node network and IEEE 30 + Gas 20 + Heat 14 nodes system) are tested using the proposed sizing method. The results show that the renewable energy location, investment cost of components, and the structure of the whole system influence the sizing results. When the installed capacity of photovoltaic panels is reduced by 50%, the capacity of the electrolyzer decreases by 3%, the capacity for the hydrogen tanks increases by 2%; when the investment cost of the fuel cell and electrolyzer decreases by 50%, the capacity of photovoltaic increases by 14%, the electrolyzer increases by 13%, and hydrogen tanks increase by 2%. After considering the worst case contingency event, for case I, the capacity of photovoltaic and fuel cell increase by 12% and 11%, and the electrolyzer increases by 34%; for case II, the capacity of photovoltaic and fuel cell increase by 8% and 11%, and the electrolyzer increases by 57%. (C) 2018 Elsevier Ltd. All rights reserved.
机译:预计多能源供应系统将在智能电网中发挥重要作用。当今的能源供应系统是大型节点网络,每个节点需要使用不同类型的能源来满足不同的能源需求。然后可以通过特定的设备将这些不同类型的能量相互转换。本文讨论了如何确定每个节点上这些设备的额定值以使系统具有成本效益。重点放在燃气/电力/热混合网络上。储氢系统(燃料电池,电解槽和储罐)用作储氢系统,热电联产设备用于产生热和电等。混合整数线性规划算法用于确定最佳运行系统计划表,目标是最大程度地减少卸货量。遗传算法还用于搜索每个组件的最佳大小,目的是最大程度地降低总投资成本。为了抵御意外事件,然后使用中间性中心度(描述每个节点的相对重要性)来查找意外事件下的最坏情况。这种最坏的情况用于研究意外事件对调整结果的影响。最后,使用建议的大小调整方法测试了两种情况(修改后的13节点网络和IEEE 30 + Gas 20 + Heat 14节点系统)。结果表明,可再生能源的选址,组件的投资成本以及整个系统的结构都会影响规模的确定。当光伏面板的安装容量减少50%时,电解槽的容量减少3%,氢气罐的容量增加2%;当燃料电池和电解槽的投资成本减少50%时,光伏容量增加14%,电解槽增加13%,氢气罐增加2%。在考虑了最坏情况的偶发事件之后,对于情况I,光伏和燃料电池的容量分别增加了12%和11%,而电解槽的容量增加了34%;对于案例II,光伏和燃料电池的容量分别增加了8%和11%,而电解槽的容量增加了57%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2018年第may15期|675-688|共14页
  • 作者单位

    Univ Bourgogne Franche Comte, UTBM, CNRS, FEMTO ST, Rue Thierry Mieg, F-90010 Belfort, France;

    Univ Bourgogne Franche Comte, UTBM, CNRS, FEMTO ST, Rue Thierry Mieg, F-90010 Belfort, France;

    Univ Bourgogne Franche Comte, UTBM, CNRS, FEMTO ST, Rue Thierry Mieg, F-90010 Belfort, France;

    Univ Bourgogne Franche Comte, UTBM, Rue Thierry Mieg, F-90010 Belfort, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sizing; Multi-energy system; Gas/electricity/heat; Hydrogen storage system; Optimization;

    机译:尺寸;多能源系统;煤气/电力/热力;储氢系统;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号