...
首页> 外文期刊>Energy >Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system
【24h】

Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system

机译:数据驱动方法在自适应冷却供应系统上证明了能量系统建模的应用

获取原文
获取原文并翻译 | 示例

摘要

The efficient and sustainable operation of building energy systems is playing an increasingly important role in most industrialized countries. At the same time, building energy systems are becoming increasingly complex; fault-free and optimal operation, under dynamic boundary conditions, is becoming more and more challenging. There are many approaches in research to address the optimal control problem of building energy systems, such as Rule-based Control, Model Predictive Control, or Adaptive Control. However, most methods rely on models of the system dynamics with high prediction accuracies. This is especially the case in Model Predictive Control, where the model is part of a continuously executed optimization problem; but models are also required when it comes to the optimal design of Rule-based Controllers, the safe pre-training of Adaptive Controllers, or model-based fault detection. A limiting factor for the manual development of physical models, for building energy systems, are the low monetary incentives for engineering services, due to the low energy prices in most countries. In addition, the creation of such models is time-consuming and error-prone, even for domain experts. Another weakness is that changes in the system dynamics are not automatically adapted within the models. These challenges are contrasted by an increasing availability of monitoring-data and computational power in recent years; with machine-learning algorithms, these resources are used in numerous application areas to achieve very promising results. Machine-learning methods can help to obtain data driven, self-calibrating models, which can be learned from monitoring-data. In this paper, we apply methods for automated data-driven model generation. We demonstrate how machine-learning algorithms together with structured hyper-parameter tuning can be used to model individual subsystems as well as a complete energy supply system. To represent the dynamics of the supply system, it is first decomposed into simple functional relationships, which are aggregated into the overall system after training of the comparatively simple subsystem models. We evaluate the accuracy of the data-driven subsystem models using established metrics for the evaluation of regression models, namely the R2 score and the RMSE. The considered system is integrated into a district cooling network and consists of two compression chillers and an ice storage unit. Our investigations show that the dynamics of the subsystems can be learned with high accuracies, depending on the operation mode and the selected features. The prediction of the power demand of the compression chillers is learned with R2-scores between 0.94 and 0.99 and RMSE values between 2.02 kW and 3.51 kW. Also, the prediction of the percentage of ice formation within the ice storage is learned accurately with a R2-score of 1 and RMSE values between 0.08 % and 0.72 %. The dynamics of the aggregated system also show plausible behavior and can thus be used in future work. This work is part of an ongoing research project with the aim to optimize the operation of the entire campus cooling energy supply system. Our results show that, if detailed monitoring-data are available, data-driven modelling represents a viable alternative to the labor-intensive physical modelling approach. Furthermore, we emphasize the importance of structured hyper-parameter tuning, discuss the specifics of different machine-learning algorithms, and elaborate on possible future developments in this research area.(c) 2021 Elsevier Ltd. All rights reserved.
机译:建筑能源系统的有效和可持续运营在大多数工业化国家发挥着越来越重要的作用。与此同时,建筑能源系统变得越来越复杂;在动态边界条件下,无故障和最佳操作,变得越来越具有挑战性。研究有许多方法来解决建筑能量系统的最佳控制问题,例如基于规则的控制,模型预测控制或自适应控制。但是,大多数方法依赖于系统动态的模型,具有高预测精度。尤其是模型预测控制中的情况,其中模型是连续执行的优化问题的一部分;但是在基于规则的控制器的最佳设计方面,也需要模型,自适应控制器的安全预训练或基于模型的故障检测。由于大多数国家的能源价格低,为建筑能源系统进行了物理模型的手工开发的限制因素,是工程服务的低货币激励措施。此外,即使是域专家,也是耗时和容易出错的。另一个弱点是系统动态的变化不会在模型中自动调整。这些挑战近年来越来越多的监测数据和计算能力造成鲜明对比;通过机器学习算法,这些资源用于许多应用领域,以实现非常有前途的结果。机器学习方法可以帮助获得数据驱动的自校准模型,可以从监控数据中学习。在本文中,我们应用了自动数据驱动模型生成的方法。我们展示了机器学习算法如何与结构化的超参数调谐一起用于建模各个子系统以及完整的能源系统。要代表供应系统的动态,首先将其分解为简单的功能关系,在对比较简单的子系统模型的训练之后被聚集到整个系统中。我们评估使用已建立的度量评估回归模型的数据驱动子系统模型的准确性,即R2分数和RMSE。被考虑的系统集成到区域冷却网络中,包括两个压缩冷水机组和冰储存单元。我们的调查表明,根据操作模式和所选功能,可以高精度地学习子系统的动态。预测压缩冷却冷却器的电力需求在0.94和0.99之间的R2分数和2.02 kW和3.51 kW之间的Rmse值。此外,在冰储存内的冰形成百分比的预测准确地学习,R2分数为1,RMSE值0.08%和0.72%。聚合系统的动态也显示了合理的行为,因此可以在将来的工作中使用。这项工作是正在进行的研究项目的一部分,旨在优化整个校园冷却能源系统的运行。我们的结果表明,如果有详细的监控数据,则数据驱动的建模代表了劳动密集型物理建模方法的可行替代品。此外,我们强调了结构化超参数调整的重要性,讨论了不同机器学习算法的细节,并详细说明了本研究领域可能的未来发展。(c)2021 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2021年第1期|120894.1-120894.13|共13页
  • 作者单位

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

    Rhein Westfal TH Aachen EON Energy Res Ctr Inst Energy Efficient Bldg & Indoor Climate Aachen Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine-learning; Supervised learning; Building automation and control; Data-driven modelling; Optimal control;

    机译:机器学习;监督学习;建立自动化与控制;数据驱动建模;最优控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号