...
首页> 外文期刊>Energy >Thermo-hydro-mechanical-chemical couplings controlling CH_4 production and CO_2 sequestration in enhanced coalbed methane recovery
【24h】

Thermo-hydro-mechanical-chemical couplings controlling CH_4 production and CO_2 sequestration in enhanced coalbed methane recovery

机译:控制CH_4生产和CO_2封存在增强煤层气回收中的热 - 水电 - 化学偶联

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We explore the fully coupled thermo-hydro-mechanical-chemical (THMC) response of CO2 enhanced CBM recovery (CO2-ECBM) considering the coupling relationships of competitive sorption of binary gas and dissolved gas in water (C), gas and water transport in two phase flow (H), thermal expansion and non-isothermal gas sorption (T), and coal deformation (M). The THMC model is developed, validated then applied to simulate CO2 enhanced recovery. Parametric studies are completed, systematically switching-off components of the thermal (T) and hydraulic (H) coupling, to provide insights into key processes controlling ECBM recovery and key factors. The evolution of permeability is strongly dependent on coal matrix swelling/shrinkage induced by gas adsorption/desorption, expansion by thermal effects, and compaction by effective stress. Reservoir permeability first decreases, then rebounds before continuously decreasing to low magnitude. Ignoring the impact of water migration overestimates CH4 production, and ignoring heat transfer underestimates. The high injection pressure and initial permeability will promote fluid mixture transport, resulting in an increase in production and sequestration; conversely, high injection temperature and water saturation will result in a decrease. Delaying injection start time is shown to counter the low average production rate and early CO2 breakthrough resulting from early injection (beginning at similar to 2500 days for this case). (C) 2019 Elsevier Ltd. All rights reserved.
机译:考虑到二元气体和溶解气体在水(C),天然气和水运输中,考虑到CO2增强的CBM恢复(CO2-ECBM)的完全耦合的热水 - 机械 - 化学(CO2-ECBM)响应两相流(H),热膨胀和非等温气体吸附(T)和煤变形(M)。开发了THMC模型,验证了应用于模拟CO2增强恢复。完成参数研究,系统地切断热(T)和液压(H)耦合的组件,以提供对控制ECBM恢复和关键因素的关键过程的见解。渗透性的演变强烈依赖于通过气体吸附/解吸,通过热效应的膨胀,通过有效应力进行压实的煤基质溶胀/收缩。储层渗透率首先降低,然后在持续减少到低幅度之前篮板篮板。忽略水迁移的影响高估了CH4生产,忽略了低估的热传递。高注射压力和初始渗透性将促进流体混合物运输,导致生产和封存的增加;相反,高喷射温度和水饱和将导致降低。延迟注射开始时间被显示为抵消较低的平均生产率和早期注射引起的早期CO2突破(在这种情况下开始类似于2500天)。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2019年第15期|1054-1077|共24页
  • 作者单位

    Liaoning Tech Univ Coll Min Fuxing Liaoning Peoples R China|Henan Polytech Univ State Key Lab Cultivat Base Gas Geol & Gas Contro Jiaozuo Henan Peoples R China|Penn State Univ Energy & Mineral Engn G3 Ctr University Pk PA 16802 USA|Penn State Univ EMS Energy Inst University Pk PA 16802 USA;

    Penn State Univ Energy & Mineral Engn G3 Ctr University Pk PA 16802 USA|Penn State Univ EMS Energy Inst University Pk PA 16802 USA;

    Liaoning Tech Univ Coll Min Fuxing Liaoning Peoples R China;

    Liaoning Tech Univ Coll Min Fuxing Liaoning Peoples R China|Henan Polytech Univ State Key Lab Cultivat Base Gas Geol & Gas Contro Jiaozuo Henan Peoples R China;

    Liaoning Tech Univ Coll Min Fuxing Liaoning Peoples R China;

    Penn State Univ Energy & Mineral Engn G3 Ctr University Pk PA 16802 USA|Penn State Univ EMS Energy Inst University Pk PA 16802 USA|China Univ Min & Technol Sch Resources & Geosci Xuzhou Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coalbed methane; CO2 sequestration; Enhanced CBM recovery (ECBM); Binary gas transport; Thermo-hydro-mechanical-chemical model (THMC); Injection start time;

    机译:煤层;CO2封存;增强CBM恢复(ECBM);二元气体运输;热水机械 - 化学模型(THMC);注射开始时间;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号