...
首页> 外文期刊>Energy >Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process
【24h】

Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process

机译:动力锰酸锂电池充电过程中传质和热力学的建模与表征

获取原文
获取原文并翻译 | 示例
           

摘要

Based on the electric charge conservation laws, the mass transfer and the energy conservation, a coupled electrochemical-thermal model of the Lithium battery is established and validated by the experiment data. And then the coupled model is applied to investigate the electrochemical and thermal characteristics of the power Lithium manganate battery at 1C charging ratio and the obtained results include the electrolyte concentration distribution trend, the current density distribution rule, Fick diffusion of the Lithium ions, etc. This results show that the temperature of electrolyte region is significantly higher than that of the regions near to the positive and negative electrode during charging process due to the transfer of Lithium ions in the electrolyte region. Meanwhile, the concentration of active substance particles and the electrolyte concentration can be employed to characterize the polarization size. When charging rates are 0.5C, 1.0 C and 1.5C, the charge times of power Lithium manganate battery are 7200s, 3600s and 2700s, respectively. The maximum and minimum internal temperatures at the end of the charging process are 307.2K/305.8K, 328.2K/323.6K and 341.2K/332.7K, respectively. The appropriate increase of the heat dissipation in the middle of the battery is useful for the reduction of the central temperature inside the battery. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于电荷守恒律,传质和能量守恒,建立了锂电池电化学-热耦合模型,并通过实验数据进行了验证。然后应用耦合模型研究动力锰酸锂电池在1C充电比下的电化学和热学特性,获得的结果包括电解质浓度分布趋势,电流密度分布规律,锂离子的Fick扩散等。该结果表明,由于锂离子在电解质区域中的转移,在充电过程中,电解质区域的温度明显高于靠近正电极和负电极的区域的温度。同时,可以采用活性物质颗粒的浓度和电解质的浓度来表征极化尺寸。当充电速率为0.5C,1.0 C和1.5C时,动力锰酸锂电池的充电时间分别为7200s,3600s和2700s。充电过程结束时的最高和最低内部温度分别为307.2K / 305.8K,328.2K / 323.6K和341.2K / 332.7K。适当增加电池中间的散热量有助于降低电池内部的中央温度。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号