首页> 外文期刊>Energy Research Journal >Geometry Modification of Flywheels and its Effect on Energy Storage
【24h】

Geometry Modification of Flywheels and its Effect on Energy Storage

机译:飞轮的几何修改及其对储能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper examines the influence of various geometric configurations of flywheels on kinetic energy storage performance using finite element analysis. Historically flywheels have been used in various applications. From such applications as pottery wheels to steam engines, flywheels have been used to store mechanical energy. Currently, in the ever expanding world of green energy development, flywheel energy storage systems provide an alternative source of energy storage that does not harm the surrounding environment. But when it comes to overall efficiency, e.g., manufacturing, reduced energy loss, in providing energy to the public, there is always a need for a more cost effective energy storage system. As such, this paper analyzes various geometric configurations of flywheels for the purposes of utilization as an energy storage source alternative. In particular, this is focused on the fact that reducing the amount of materials needed to produce the greatest amount of energy, i.e., high energy density, is needed for a flywheel energy storage system. In the analysis, the key parameters for each flywheel configuration are considered to examine the flywheel energy storage performance. These parameters are polar moment of inertia for determining the energy capacity of the flywheel, the shape factor for each cross section and maximum stress in the flywheel with its corresponding maximum angular velocity for each cross section. With all analytical results in terms of those parameters, an optimal flywheel system will be determined.
机译:本文使用有限元分析方法研究了飞轮的各种几何构型对动能存储性能的影响。历史上,飞轮已经用于各种应用中。从诸如陶轮到蒸汽机的应用,飞轮已经用于存储机械能。当前,在不断发展的绿色能源发展世界中,飞轮储能系统提供了另一种不损害周围环境的储能资源。但是,当涉及到向公众提供能源时的整体效率,例如制造,减少的能量损失时,总需要一种更具成本效益的储能系统。因此,本文分析了飞轮的各种几何构型,以将其用作能量存储源的替代选择。特别地,这集中于以下事实:飞轮储能系统需要减少产生最大能量即高能量密度所需的材料量。在分析中,考虑了每个飞轮配置的关键参数以检查飞轮储能性能。这些参数是用于确定飞轮能量容量的极惯性矩,每个横截面的形状因子以及飞轮中的最大应力以及每个横截面的相应最大角速度。根据所有这些参数的分析结果,将确定最佳的飞轮系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号