首页> 外文期刊>Energy & fuels >The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications
【24h】

The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications

机译:理想的基于植物油的生物柴油成分:社会,经济和技术意义的回顾

获取原文
获取原文并翻译 | 示例
       

摘要

Though a considerable number of publications about biodiesel can be found in literature, several problems remain unsolved, encompassing economical, social, and technical issues. Thus, the biodiesel industry has come under attack by some environmental associations, and subsidies for biofuel production have been condemned by some governments. Yet, biodiesel may represent a truly competitive alternative to diesel fuel, for which fuel tax exemption and subsidies to energetic crops are needed. Biodiesel must increase its popularity among social movements and governments to constitute a valid alternative of energy source. In this sense, the use of nonedible oils to produce biodiesel is proposed in the present review. Moreover, the compromise of noninterference between land for energetic and food purposes must be addressed. Concerning technical issues, it is important to consider a transesterification optimization, which is missing or incomplete for too many vegetable oils already tested. In most cases, a common recipe to produce biodiesel from any raw material has been adopted, which may not represent the best approach. Such strategy may fit multifeedstock biodiesel plant needs but cannot be accepted for oils converted individually into biodiesel, because biodiesel yield will most likely fail, increasing costs. Transesterification optimization results depend on the chemical composition of vegetable oils and fats. Considering "sustainable" vegetable oils, biodiesel from Calophyllum inophyllum, Azadirachta indica, Terminalia catappa, Madhuca indica, Pongamia pinnata, and Jatropha curcas oils fits both current biodiesel standards: European EN 14214 and US ASTM D 6751 02. However, none of them can be considered to be the "ideal" alternative that matches all the main important fuel properties that ensure the best diesel engine behavior. In search of the ideal biodiesel composition, high presence of monounsaturated fatty acids (as oleic and palmitoleic acids), reduced presence of polyunsaturated acids, and controlled saturated acids content are recommended. In this sense, C18:1 and C16:1 are the best-fitting acids in terms of oxidative stability and cold weather behavior, among many other properties. Furthermore, genetic engineering is an invaluable tool to design oils presenting the most suitable fatty acid profile to provide high quality biodiesel. Finally, most published research related to engine performance and emissions fails in using a standard methodology, which should be implemented to allow the comparison between tests and biofuels from different origin. In conclusion, a compromise between social, economical, and technical agents must be reached.
机译:尽管在文献中可以找到大量有关生物柴油的出版物,但仍存在一些尚未解决的问题,包括经济,社会和技术问题。因此,生物柴油行业受到了一些环境协会的攻击,一些政府谴责了对生物燃料生产的补贴。然而,生物柴油可能是柴油燃料的真正竞争替代品,为此需要免除燃料税和对高能作物的补贴。生物柴油必须提高其在社会运动和政府中的流行度,才能构成能源的有效替代品。从这个意义上讲,本综述提出了使用非食用油生产生物柴油的建议。此外,必须解决土地之间在能源和粮食方面的不干扰问题。关于技术问题,重要的是要考虑酯基转移的优化,这对于已经测试的太多植物油来说是缺失的或不完整的。在大多数情况下,采用了从任何原料生产生物柴油的通用配方,这可能并不是最好的方法。这种策略可能适合多原料生物柴油工厂的需求,但不能被单独转化为生物柴油的油所接受,因为生物柴油的产量很可能会失败,从而增加成本。酯交换优化结果取决于植物油脂的化学组成。考虑到“可持续”植物油,来自Calophyllum inophyllum,Azadirachta indica,Terminalia catappa,Madhuca indica,Pongamia pinnata和Jatropha curcas油的生物柴油均符合当前的生物柴油标准:欧洲EN 14214和美国ASTM D 675102。但是,它们均不能使用。被认为是与所有重要的重要燃料特性相匹配的“理想”替代品,可确保最佳柴油发动机性能。为了寻找理想的生物柴油组成,建议高单不饱和脂肪酸(如油酸和棕榈油酸)的存在,多不饱和酸的存在减少以及饱和酸含量的控制。从这个意义上说,就其他方面而言,就氧化稳定性和寒冷天气而言,C18:1和C16:1是最合适的酸。此外,基因工程是设计具有最合适脂肪酸谱的油以提供高质量生物柴油的宝贵工具。最后,大多数与发动机性能和排放有关的已发表的研究都未能使用标准方法,应采用标准方法,以便在测试和不同来源的生物燃料之间进行比较。总之,必须在社会,经济和技术代理之间达成妥协。

著录项

  • 来源
    《Energy & fuels》 |2009年第3期|2325-2341|共17页
  • 作者单位

    Department of Chemical Physics and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci;

    Department of Chemical Physics and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci;

    Department of Agricultural Engineering, ETSIAM, Edificio Leonardo da Vinci;

    Department of Analytical Chemistry, Edificio Marie Curie;

    Department Bioquimica y Biologia Molecular, Campus Rabanales,C6-1-E17, Universidad de Cordoba, 14071 Cordoba, Spain;

    Department of Chemical Physics and Applied Thermodynamics, EPS, Edificio Leonardo da Vinci;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:42:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号