...
首页> 外文期刊>Energy & fuels >Production of Biofuels and Biochemicals from Lignocellulosic Biomass: Estimation of Maximum Theoretical Yields and Efficiencies Using Matrix Algebra
【24h】

Production of Biofuels and Biochemicals from Lignocellulosic Biomass: Estimation of Maximum Theoretical Yields and Efficiencies Using Matrix Algebra

机译:木质纤维素生物质生产生物燃料和化学药品:使用矩阵代数估算最大理论产量和效率

获取原文
获取原文并翻译 | 示例

摘要

The dependence on fossil fuels in developed countries is causing increasing concern. Global warming, issues related to peak oil, sustainability issues, and mounting concern for national energy security are the main drivers for a worldwide effort toward a reduction in fossil fuel consumption. The challenge is substantial, because fossil resources are such an integral part of our economy. However, there are many efforts to address this challenge. Development of conversion technologies fed by renewable resources is seen as a promising option. Many technologies for renewable energy are already well-developed and competitive in the market. Emerging technologies include biorefinery complexes, where biomass is used as a renewable carbon-based source for the production of bioenergy and biochemicals. The latter is perceived as a promising alternative to oil-based chemicals. Given the constraints on availability for renewable biomass supply, the importance of efficient use of biomass with a maximization of useful final products is well-acknowledged. Assessing the potentials for biochemicals can be achieved with an a priori cstimation of the maximum theoretical yields, as well as a prediction of the conversion efficiencies (in terms of mass, carbon, and energy efficiency) of selected biorefinery production chains. This paper addresses this issue, providing a calculation procedure with which the theoretical yields and efficiencies of some biorefinery systems are estimated. Among the possible biomass sources, lignocellulosic biomass is selected as the raw material, because it is the most-widespread renewable source available in the world, it is locally available in many countries, and it does not compete with food and feed industries. The conversion of biomass to biofuels and chemicals requires conversion of the feedstock from a solid to a liquid state, but also the addition of hydrogen and rejection of excess oxygen, together with other undesired elements. The carbon contents of lignocellulosic biomass components (cellulose, hemicellulose, and lignin) and products are calculated with the help of mathematical equations, and then the chemical reactions for the conversion of feedstock to products are modeled using matrix algebra: the maximum amount of biofuels and/or biochemicals from biomass and the maximum mass, energy, and carbon conversion efficiency of the biorefinery pathway are determined. Following this calculation procedure, an application to some biorefinery systems is performed and discussed. Combining the best feedstock with the most promising final products, results show that up to 0.33 kg of bioethanol, 0.06 kg of furfural, and 0.17 kg of FT-diesel per kg of softwood can be produced and mass, carbon, and energy conversion efficiencies of 56%, 70%, and 82%, respectively, are achieved.
机译:发达国家对化石燃料的依赖性日益引起人们的关注。全球变暖,与石油峰值有关的问题,可持续性问题以及对国家能源安全的日益关注是推动全球减少化石燃料消耗的主要动力。挑战是巨大的,因为化石资源是我们经济不可或缺的一部分。但是,人们为解决这一挑战做出了许多努力。由可再生资源提供的转化技术的发展被认为是一个有前途的选择。许多可再生能源技术已经成熟并且在市场上具有竞争力。新兴技术包括生物精炼厂,其中生物质被用作可再生的碳基资源,用于生产生物能源和生化物质。后者被认为是石油基化学品的有前途的替代品。鉴于可再生生物质供应的可利用性受到限制,人们充分认识到有效利用生物质并最大限度地利用有用的最终产品的重要性。可以通过对最大理论产量的先验评估以及对所选生物炼油厂生产链的转化效率(就质量,碳和能源效率而言)的预测来评估生物化学的潜力。本文解决了这个问题,提供了一种计算程序,通过该程序可以估算某些生物精炼系统的理论产量和效率。在可能的生物质资源中,选择木质纤维素生物质作为原材料,因为它是世界上使用最广泛的可再生资源,在许多国家/地区都可以使用,并且不与食品和饲料工业竞争。将生物质转化为生物燃料和化学药品需要将原料从固态转化为液态,还需要添加氢气和排除过量的氧气,以及其他不需要的元素。借助数学方程式计算木质纤维素生物质组分(纤维素,半纤维素和木质素)和产品的碳含量,然后使用矩阵代数模拟将原料转化为产品的化学反应:最大量的生物燃料和确定来自生物质的生物化学物质以及生物精炼途径的最大质量,能量和碳转化效率。按照此计算程序,将执行并讨论对某些生物精炼系统的应用。将最好的原料与最有希望的最终产品相结合,结果表明,每千克软木可以生产多达0.33千克的生物乙醇,0.06千克的糠醛和0.17千克的FT柴油,质量,碳和能量转换效率为分别达到了56%,70%和82%。

著录项

  • 来源
    《Energy & fuels 》 |2010年第maraaapr期| p.2657-2666| 共10页
  • 作者单位

    Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),NO-7491 Trondheim, Norway;

    rnDepartment of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),NO-7491 Trondheim, Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号