首页> 外文期刊>Energy & fuels >Computational-Fluid-Dynamics-Based Evaluation and Optimization of an Entrained-Flow Gasifier Potential for Coal Hydrogasification
【24h】

Computational-Fluid-Dynamics-Based Evaluation and Optimization of an Entrained-Flow Gasifier Potential for Coal Hydrogasification

机译:基于计算流体动力学的煤加氢气化气流床气化炉潜力评估与优化

获取原文
获取原文并翻译 | 示例
       

摘要

To evaluate and optimize a developed two-stage entrained flow bed gasifier when it is used for the coal hydrogasification (CHG) process, a series of comprehensive three-dimensional numerical simulations designed with the orthogonal method are carried out The effects of different operating conditions, including the reaction pressure p, H_2/coal mass ratio R_(h/c) and O_2/H_2 mass ratio R_(o/b) on the fields and the evolution histories of the gasification parameters as well as the carbon conversion rate (CCR), the CH_4 mole fraction (MMF), and the cold gas efficiency (CGE) are analyzed, and meaningful conclusions are obtained. The hydrogasifier proposed in this work performs well. Counter flow can be detected in the gasifier and is beneficial for char conversion. The gas temperature and MMF increase with the height of the gasifier, while the hydrogen mole fraction (HMF) decreases. The water mole fraction (WMF) increases with the height of the gasifier if the gasification temperature is high; otherwise, it will decreases slightly. The distribution of CH, in the top zone of the reductor tends to be homogeneous with the increase of R_(o/b). Ranked in descending order, the effect degrees of the operating conditions on CCR, MMF, and CGE are R_(o/b) > p > R_(h/c) p > R_(h/c) > R_(o/h) and R_(h/c) > R_(o/h) = p, respectively. The optimum combinations of the operating conditions for CCR, MMF, and CGE are p = 7 MPa, R_(h/c) = 0.7, and R_(o/h)= 1.S; p = 7 MPa, R_(h/c) = 0.3, and R_(o/h) = 1.5; and p - 3 MPa (p = 5 MPa), R(b/c) = 0.7, and R_(o/h) = 1.25, respectively. After comprehensive analyses, a synthetically optimal combination of the operating condition is proposed. With this condition, CCR can reach 96.78%, MMF can reach 17.42%, and CGE can reach 76.4%.
机译:为了评估和优化已开发的两级夹带流化床气化炉用于煤气加氢气化(CHG)过程时,进行了一系列使用正交方法设计的综合三维数值模拟,研究了不同操作条件的影响,包括反应压力p,H_2 /煤质量比R_(h / c)和O_2 / H_2质量比R_(o / b)的气化参数的场和演变历史以及碳转化率(CCR)分析了CH_4的摩尔分数(MMF)和冷气效率(CGE),并得出有意义的结论。在这项工作中提出的加氢气化器运行良好。可以在气化炉中检测到逆流,这有利于炭转化。气体温度和MMF随气化炉高度的增加而增加,而氢摩尔分数(HMF)则降低。如果气化温度高,水的摩尔分数(WMF)随气化炉高度的增加而增加;否则,它将略有减少。随着R_(o / b)的增加,还原剂顶部区域的CH分布趋于均匀。按降序排列,操作条件对CCR,MMF和CGE的影响程度为R_(o / b)> p> R_(h / c)p> R_(h / c)> R_(o / h)和R_(h / c)> R_(o / h)= p。 CCR,MMF和CGE的最佳工作条件组合为p = 7 MPa,R_(h / c)= 0.7和R_(o / h)= 1.S; p = 7MPa,R_(h / c)= 0.3,R_(o / h)= 1.5。和p-3 MPa(p = 5 MPa),R(b / c)= 0.7和R_(o / h)= 1.25。经过综合分析,提出了运行条件的综合最佳组合。在这种情况下,CCR可以达到96.78%,MMF可以达到17.42%,CGE可以达到76.4%。

著录项

  • 来源
    《Energy & fuels》 |2013年第novaadeca期|6397-6407|共11页
  • 作者单位

    School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China;

    School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China;

    School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China;

    School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China;

    School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China;

    School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号