首页> 外文期刊>Energy & fuels >Geomechanical and Thermal Responses of Hydrate-Bearing Sediments Subjected to Thermal Stimulation: Physical Modeling Using a Geotechnical Centrifuge
【24h】

Geomechanical and Thermal Responses of Hydrate-Bearing Sediments Subjected to Thermal Stimulation: Physical Modeling Using a Geotechnical Centrifuge

机译:受热刺激的含水合物沉积物的地质力学和热响应:使用岩土离心机的物理模型

获取原文
获取原文并翻译 | 示例
       

摘要

The geomechanical and thermal responses of sediments can be significantly affected by the dissociation of gas hydrates via various emergent phenomena such as fluid volume expansion, free gas generation, gas migration, and sediment softening. This study explores the geomechanical and thermal responses of hydrate-bearing sediments subjected to thermal stimulation, using physical modeling with a geotechnical centrifuge that enables the simulation of near-seafloor sediment conditions. A water-saturated and CO_2 hydrate-bearing sand column was prepared in a large cylindrical pressure vessel, and a linear stress gradient for a near-seafloor condition was created by increasing centrifugal acceleration. The hydrate-bearing sand column was subjected to thermal stimulation, and changes in temperature, pressure, compressional wave velocity (V_P), shear wave velocity (V_s), and electrical resistance were monitored at various locations across the column. It was found that V_P and electrical resistance were good indicators of the presence of free gas, while V_S reflected the reduction in shear stiffness, caused by decementation resulting from hydrate dissociation. The thermal diffusivity of hydrate-bearing sediments significantly decreased as the gas hydrate dissociated and free gas saturation increased. Such a process is expected to retard gas production from hydrate deposits. Temporary accumulation of excess pore pressures >200 kPa was observed even in the fine sandy sediment; this excess pressure resulted from the increased capillary pressure exerted by the hydrate formed at the grain contacts, coupled with the continuous hydrate dissociation against pressure diffusion and resulting gas migration. This suggests a possible sediment volume expansion, an uplifting deformation at the seafloor, or a fracture generation in sediments. By contrast, the vanishing of solid hydrate crystals by hydrate dissociation led to decementation and softening of sediments, indicating a possible postdissociation subsidence at the seafloor and at dissociated regions during gas production from hydrate-bearing sediments.
机译:气体水合物通过各种涌现现象(如流体体积膨胀,自由气体生成,气体迁移和沉积物软化)而解离,可显着影响沉积物的地质力学和热响应。这项研究利用岩土离心机的物理模型,能够模拟近海沉积物条件,探索了受到热刺激的含水合物沉积物的地球力学和热响应。在大型圆柱压力容器中制备了水饱和的含CO_2水合物的砂柱,并通过增加离心加速度创建了近海条件下的线性应力梯度。对含水合物的砂柱进行热增产,并在整个柱的各个位置监测温度,压力,压缩波速度(V_P),剪切波速度(V_s)和电阻的变化。发现V_P和电阻是存在自由气体的良好指示,而V_S反映了由水合物离解引起的胶结作用引起的剪切刚度的降低。含水合物沉积物的热扩散系数随着气体水合物的分解和自由气体饱和度的增加而显着降低。预期这种方法会阻止水合物沉积的气体产生。即使在细砂质沉积物中,也观察到过大孔隙压力> 200 kPa的暂时蓄积;这种过大的压力是由于在晶粒接触处形成的水合物施加的毛细压力增加,再加上水合物的连续解离以防止压力扩散和气体迁移。这表明可能有沉积物体积膨胀,海底隆升变形或沉积物中产生裂缝。相反,固体水合物晶体由于水合物的分解而消失,导致沉积物的软化和软化,这表明在从含水合物沉积物中生产天然气的过程中,海底和离解区域可能发生离解后沉降。

著录项

  • 来源
    《Energy & fuels》 |2013年第julaaauga期|4507-4522|共16页
  • 作者单位

    Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea;

    Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea;

    Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea;

    School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, Korea;

    Korea Electric Power Research Institute, Daejeon, Korea;

    Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号