首页> 外文期刊>Energy & fuels >Comprehensive Study of Ignition and Combustion of Single Wooden Particles
【24h】

Comprehensive Study of Ignition and Combustion of Single Wooden Particles

机译:木质单颗粒点火燃烧的综合研究

获取原文
获取原文并翻译 | 示例
       

摘要

How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass conring design and optimization. In this paper, the ignition and burnout of the largest possible biomass (pine wood) particles in a pf furnace (a few millimeters in diameter) are studied experimentally in a single particle combustion reactor rig, in which the ambient gas temperature and oxygen concentration can vary in the ranges 1473-1873 K and S-20%, respectively. A one dimensional (ID) transient model is also developed to predict their conversion, in which the key processes inside the particle and in the boundary layer outside the particle are property considered. For the pine wood particles in which large temperature gradients exist, the primary heterogeneous ignition is always detected for all the test conditions. As the particle is further heated and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced impact on the ignition delays and burnout times at lower oxidizer temperatures.
机译:在运输到粉状燃料(pf)炉中并突然暴露于含氧的热气流中时,大的生物质颗粒能燃烧和燃烧多快,对于生物质设计和优化至关重要。本文在单颗粒燃烧反应堆装置中实验研究了粉煤炉(直径为几毫米)中最大可能的生物质(松木)颗粒的着火和燃尽,其中环境气体温度和氧气浓度可以分别在1473-1873 K和S-20%的范围内变化。还开发了一个一维(ID)瞬态模型来预测它们的转换,其中考虑了粒子内部和粒子外部边界层中的关键过程。对于存在较大温度梯度的松木颗粒,在所有测试条件下始终可以检测到主要的异质着火。随着颗粒被进一步加热并且体积加权平均温度达到半纤维素和纤维素的快速分解的开始,发生二次均匀点火。该模型预测的点火延迟和燃尽时间与实验结果吻合良好。发现同质点火延迟与比表面积成比例,而异质点火延迟显示出对面积的依赖性较小。点火和燃尽还受到工艺条件的影响,在这些条件下,发现氧浓度对较低的氧化剂温度下的点火延迟和燃尽时间有更明显的影响。

著录项

  • 来源
    《Energy & fuels》 |2013年第janaafeba期|1061-1072|共12页
  • 作者单位

    Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark;

    Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark;

    Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark;

    DONG Energy, Kraftvaerksvej 53, 7000 Fredericia, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号