首页> 外文期刊>Energy & fuels >Effect of Torrefaction on Bio-oil Upgrading over HZSM-5. Part 2:Byproduct Formation and Catalyst Properties and Function
【24h】

Effect of Torrefaction on Bio-oil Upgrading over HZSM-5. Part 2:Byproduct Formation and Catalyst Properties and Function

机译:干燥对HZSM-5上生物油升质的影响。第2部分:副产物的形成以及催化剂的性质和功能

获取原文
获取原文并翻译 | 示例
       

摘要

A three-step bio-oil production process involving torrefaction pretreatment (225, 250, or 275℃ at 20 min hold time), pyrolysis (500℃, two heating rates), and secondary catalytic processing over HZSM-5 (at 400, 450, or 500℃) was studied to determine how treatments affected byproduct formation and catalyst properties and function. Torrefaction pretreatment significantly reduced average yields (%, w/w of feed) of reactor char (10096 reduction), catalyst coke (21.4%), and catalyst tar (8.1%) relative to the best-case conditions using non-torrefied feedstock. The yields of chemical components, including levoglucosan, formic add, acetic acid, and 5-hydroxymethyUurfural (5-HMF), were significantly reduced in intermediate fast-pyrorysis bio-oil (FPO) derived from torrefied feedstock, while for intermediate slow-pyrolysis bio-oil (SPO), yields of levoglucosan, acetic acid, and 5-HMF were reduced. However, in terms of concentration, only furfural showed a significant correlation with the torrefaction temperature. Both furfural and formic add indicated correlations with coke formation, although these were negative correlations. For formic acid, a decreased coke yield with an increasing concentration was attributed to the formation of H_2 from the thermal decomposition. Combined coke, char, and tar yield significantly decreased with an increasing torrefaction temperature, decreasing formic add, acetic acid, and furfural concentrations, and an increasing levoglucosan concentration to a minimum of 14.4% (w/w of bio-oil feed). Torrefaction also increased catalyst effectiveness for minimizing changes to pore size, pore volume, and surface area upon upgrading FPO but reduced effectiveness for SPO processing. Torrefaction of biomass prior to slow pyrolysis more effectively maintained weak and strong add site density after catalytic processing, although no clear effect of torrefaction was seen for FPO-processing catalysts.
机译:生物油的三步生产过程,包括烘焙预处理(在20分钟的保持时间下达到225、250或275℃),热解(500℃,两种加热速率)以及在HZSM-5上进行二次催化处理(在400、450时) ,或500℃)进行了研究,以确定处理如何影响副产物的形成以及催化剂的性质和功能。相对于使用非焙烧原料的最佳情况,焙烧预处理显着降低了反应堆炭的平均收率(进料的w / w)(降低10096),催化剂焦炭(21.4%)和催化剂焦油(8.1%)。源自焙干原料的中间速热生物油(FPO)中的左旋葡聚糖,甲酸添加剂,乙酸和5-羟甲基尿嘧啶(5-HMF)等化学成分的收率显着降低,而中度慢速热解则生物油(SPO),左旋葡聚糖,乙酸和5-HMF的产量降低。但是,就浓度而言,仅糠醛与烘焙温度显着相关。糠醛和甲酸的添加均表明与焦炭形成相关,尽管它们是负相关。对于甲酸而言,焦炭产率随浓度的增加而降低是由于热分解形成H_2所致。焦炭,焦炭和焦油的总产率随焙烧温度的升高,甲酸的添加,乙酸和糠醛的浓度的降低以及左葡聚糖的浓度增加至最低14.4%(w / w生物油原料)而显着降低。焙烧还提高了催化剂的有效性,从而在升级FPO时最大程度地减小了孔径,孔体积和表面积的变化,但降低了SPO处理的效率。尽管对于FPO加工催化剂未见明显的烘焙作用,但在缓慢热解之前,生物质的烘焙能更有效地保持弱和强的添加位点密度。

著录项

  • 来源
    《Energy & fuels》 |2013年第janaafeba期|844-856|共13页
  • 作者单位

    College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia 30202, United States;

    College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia 30202, United States;

    College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia 30202, United States;

    College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia 30202, United States;

    College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, Georgia 30202, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号