首页> 外文期刊>Energy & fuels >Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures
【24h】

Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures

机译:单独和混合物中蛋白质,多糖和脂质的水热处理

获取原文
获取原文并翻译 | 示例
       

摘要

We subjected a set of model compounds (cornstarch and cellulose as model polysaccharides, soy protein and albumin as model proteins, sunflower oil and castor oil as model lipids) to the processing conditions and product recovery protocol commonly used for hydrothermal liquefaction (HTL) of algal biomass to make crude bio-oil. The model compounds were treated individually and in mixtures at 300 and 350 ℃ for batch holding time ranging from 10 min to 90 min. The model lipids produced the highest yield (>90 wt %) of biocrude (operationally defined as material soluble in dichloromethane), followed by the model proteins (~30-35 wt%) and then the model polysaccharides (~ 10-15 wt%). The production of biocrude at 350 ℃ occurred fully within the first 10 min of treatment, and the biocrude yield changed very little at longer times, liquefaction at 350 ℃ and 60 min nearly doubled the biocrude yields from polysaccharides, relative to those obtained at 300 ℃ and 20 min. Otherwise, the yields from the different model compounds at the milder and the more-severe conditions were comparable. In most instances, the biocrude yield from hydrothermal treatment of mixtures was very similar to the mass-averaged yield calculated from the individual compound results. The chief exceptions were binary combinations of polysaccharide and protein under the more-severe conditions. For these mixtures, the biocrude yield exceeded the mass-average yield calculated from the pure compound results, thereby providing evidence that interactions influencing the biocrude yield can occur during hydrothermal treatment of mixtures of the biomolecules. Even so, a quantitative model built on the assumption that the lipids, polysaccharides, and proteins react independendy during HTL predicted biocrude yields for ternary mixtures more accurately than did a model with three additional parameters that allowed for die possibility of interactions between the different model compounds.
机译:我们对一组模型化合物(玉米淀粉和纤维素作为模型多糖,大豆蛋白和白蛋白作为模型蛋白,向日葵油和蓖麻油作为模型脂质)进行了藻类水热液化(HTL)常用的加工条件和产品回收方案生物质来制造粗生物油。分别对模型化合物进行处理,并分别在300和350℃的混合物中处理,保持时间为10分钟至90分钟。模型脂质产生的生物粗品(可操作地定义为可溶于二氯甲烷的物质)的产量最高(> 90 wt%),其次是模型蛋白质(〜30-35 wt%),然后是模型多糖(〜10-15 wt%) )。在处理的前10分钟内,在350℃时完全产生了生物粗品,并且在较长时间内生物粗品的变化很小,在350℃和60分钟时液化的多糖产量几乎是在300℃时的两倍。 20分钟否则,在较温和较重的条件下,不同模型化合物的收率可比。在大多数情况下,对混合物进行水热处理的生物粗品收率与根据单个化合物结果计算的质量平均收率非常相似。主要的例外是在更严格的条件下多糖和蛋白质的二元组合。对于这些混合物,生物粗品产率超过了根据纯化合物结果计算的质量平均产率,从而提供了证据,证明在生物分子混合物的水热处理期间会发生影响生物粗品产率的相互作用。即便如此,定量模型仍基于以下假设:HTL期间脂类,多糖和蛋白质独立反应,预测三元混合物的生物粗品产率要比具有三个附加参数的模型更准确,该模型允许不同模型化合物之间相互作用的可能性。

著录项

  • 来源
    《Energy & fuels》 |2014年第novaadeca期|7501-7509|共9页
  • 作者单位

    Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Chemistry, East China Normal University,Shanghai 200241, PRC;

    Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States,Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号