首页> 外文期刊>Energy & fuels >Flow of Gases in Organic-Nanoscale Channels: A Boundary-Driven Molecular Simulation Study
【24h】

Flow of Gases in Organic-Nanoscale Channels: A Boundary-Driven Molecular Simulation Study

机译:气体在有机纳米通道中的流动:边界驱动的分子模拟研究

获取原文
获取原文并翻译 | 示例
       

摘要

In modeling fluid transport in organic nanopores of shale, particular attention should be paid to the gas wall interactions, specifically the adsorption phenomena, and the fact that the size of pores are comparable with the mean-free-path of the gas molecules. The objective for this work is to investigate the significance of the adsorbed gas molecules in the total mass flux of organic nanoscale channels. Molecular dynamics (MD) has proven to be a credible technique to examine dynamics of atomic-level phenomena. In this study, transport of four different gases, methane and argon (high adsorption affinity) and helium and neon (low adsorption affinity), is studied, and their velocity and mass flux profiles are analyzed using dual control volume grand canonical molecular dynamics (DCV-GCMD) simulations. DCV-GCMD simulations are performed for different pressures, pressure gradients, and channel sizes. Computed normalized velocities are close to 1 for all the gases and channel heights, which shows that the velocity profiles are plug-shaped. For all the gases, as the pressure increases, the density and normalized velocity of the molecules at the wall increase. Furthermore, as pressure increases, the local strain rate at the channel wall decreases because the viscosity of the fluids increases as the pressure increases. The contribution of the adsorbed gas to the total mass flux across the channel for methane is significant. Investigation of the effect of the channel length on the velocity profiles shows that the channel lengths have a significant impact on transport of gases through nanochannels.
机译:在对页岩有机纳米孔中的流体传输进行建模时,应特别注意气体壁的相互作用,特别是吸附现象,以及孔的大小与气体分子的平均自由程可比的事实。这项工作的目的是研究有机纳米级通道总质量通量中吸附气体分子的重要性。分子动力学(MD)已被证明是检验原子级现象动力学的可靠技术。在这项研究中,研究了甲烷和氩气(高吸附亲和力)和氦气和氖气(低吸附亲和力)四种不同气体的传输,并使用双重控制体积大规范分子动力学(DCV)分析了它们的速度和质量通量分布-GCMD)模拟。针对不同的压力,压力梯度和通道大小执行DCV-GCMD模拟。对于所有气体和通道高度,计算出的归一化速度都接近于1,这表明速度分布是塞形的。对于所有气体,随着压力增加,壁上分子的密度和归一化速度增加。此外,随着压力增加,通道壁处的局部应变率减小,因为流体的粘度随着压力增加而增加。吸附气体对甲烷通道中总质量通量的贡献很大。对通道长度对速度分布的影响的研究表明,通道长度对气体通过纳米通道的传输有重大影响。

著录项

  • 来源
    《Energy & fuels》 |2016年第10期|8156-8163|共8页
  • 作者单位

    West Virginia Univ, Petr & Nat Gas Engn, Benjamin M Statler Coll Engn & Mineral Resources, 395 Evansdale Dr, Morgantown, WV 26506 USA;

    West Virginia Univ, Petr & Nat Gas Engn, Benjamin M Statler Coll Engn & Mineral Resources, 395 Evansdale Dr, Morgantown, WV 26506 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号