首页> 外文期刊>Energy & fuels >Optimal Design of Low-Temperature Air Injection with Propane for Efficient Recovery of Heavy Oil in Deep Naturally Fractured Reservoirs: Experimental and Numerical Approach
【24h】

Optimal Design of Low-Temperature Air Injection with Propane for Efficient Recovery of Heavy Oil in Deep Naturally Fractured Reservoirs: Experimental and Numerical Approach

机译:用于深部天然裂缝性油藏中有效开采重油的带丙烷低温空气注入的优化设计:实验和数值方法

获取原文
获取原文并翻译 | 示例
       

摘要

Low-temperature air/solvent injection (LTASI) can be a possibility if injected air/solvent into a fractured reservoir diffuses into the matrix effectively to oxidize oil in it while reducing its-viscosity by temperature and solvent dissolution. However, early breakthrough of air with partial consumption of oxygen as a result of the highly conductive nature of the reservoirs is a concern. Once it is controlled by a proper injection scheme and consumption of air injected through efficient diffusion into the matrix, low-temperature air injection (LTAI) can be an alternative technique for heavy-oil recovery from deep naturally fractured reservoirs (NFRs). Limited number of studies on light oils showed that this process was highly dependent upon the oxygen diffusion coefficient and matrix permeability. In this process, oil production is governed by drainage and stripping of light oil components, which have a greater effect on recovery than the swelling of oil. In the present study, static laboratory tests were performed that complement previously published experimental data, by immersing heavy-oil-saturated porous media into air-filled reactors to determine critical parameters on recovery, such as the diffusion coefficient. A data acquisition system was established for continuous monitoring of the pressure at different temperatures. Also analyzed was the possibility of hydrocarbon gas additive to air, minimizing the oil viscosity increase created by oxidation reactions. On the basis of core-scale experimental results, a numerical simulation model of air diffusion into a single matrix was created to obtain the diffusion coefficient through matching of laboratory results. Then, sensitivity runs were performed for different matrix sizes and composition of injected gas (air and hydrocarbon). Additionally, a scaling-up study was performed to obtain an approximate production time for different matrix block sizes and temperatures. It is imperative that enough timing is required for the diffusion process before injected air filling to fracture network breakthrough. This implies that huff-and-puff-type injection is an option as opposed to continuous injection of air. The optimal design and duration of the cycles were also tested experimentally and numerically for a single matrix case.
机译:如果向裂缝性储层中注入的空气/溶剂有效扩散到基质中以氧化其中的油,同时通过温度和溶剂溶解降低其粘度,则可能会发生低温空气/溶剂注入(LTASI)。然而,由于储层的高导电性,导致空气的早期渗透以及氧气的部分消耗是令人关注的。一旦通过适当的注入方案进行控制并通过有效扩散到基质中而注入的空气消耗量得以实现,低温空气注入(LTAI)可以成为从深层天然裂缝性油藏(NFR)开采重油的另一种技术。对轻油的有限研究表明,此过程高度依赖于氧扩散系数和基质渗透性。在此过程中,采油受轻油成分的排空和汽提的支配,这比油的溶胀对采收率的影响更大。在本研究中,通过将重油饱和的多孔介质浸入充满空气的反应器中以确定回收率的关键参数(例如扩散系数),对静态数据进行了补充以前发布的实验数据的静态实验室测试。建立了一个数据采集系统,用于连续监测不同温度下的压力。还分析了碳氢化合物气体添加到空气中的可能性,从而最大程度地减少了由氧化反应引起的油粘度增加。根据核心规模的实验结果,建立了空气扩散到单个矩阵中的数值模拟模型,以通过匹配实验室结果获得扩散系数。然后,对不同基质尺寸和注入气体(空气和碳氢化合物)的成分进行了灵敏度分析。此外,进行了放大研究,以获得不同基质块尺寸和温度的近似生产时间。至关重要的是,扩散过程需要足够的时间才能注入空气以使裂缝网络突破。这意味着与连续注入空气相反,可以选择“吹气式”注入。对于单个矩阵的情况,还通过实验和数值测试了周期的最佳设计和持续时间。

著录项

  • 来源
    《Energy & fuels》 |2016年第4期|2662-2673|共12页
  • 作者单位

    Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada;

    Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号